Trilemma of International Finance

Trilemma of International Finance

The relative value of any two curren-
ciesโ€”the exchange rateโ€”is determined
through their sale and purchase on the global foreign exchange market. If government policy interferes with this market by changing the relative supply or demand of currencies, the exchange rate is managed.

The trilemma of international finance, is a restriction on government policy that follows immediately from the interaction of exchange rates, monetary policy and international capital flows.


Trilemma of International Finance

The trilemma states that any country can have only two of the following:

  • (1) Unrestricted international capital markets.
  • (2) A managed exchange rate.
  • (3) An independent monetary policy.

If the government wants a managed exchange rate but does not want to interfere
with international capital flows, it must use
monetary policy to accommodate changes
in the demand for its currency in order to
stabilize the exchange rate.

In the extreme, this would take the form of a currency board arrangement, where the domestic currency is fully backed by a foreign currency (as in the case of Hong Kong).

In such a situation, monetary policy can no longer be used for domestic purposes (it is no longer independent).

If a country wishes to maintain control over monetary policy to reduce domestic unemployment or inflation, for example, it must limit trades of its currency in the international capital market (it no longer has free international capital markets).

A country that chooses to have both unrestricted inter-national capital flows and an independent monetary policy can no longer influence its exchange rate and, therefore, cannot have a managed exchange rate.



Pieters and Vivanco (2016), government
attempts to regulate the globally accessible
bitcoin markets are generally unsuccessful,
and, as shown in Pieters (2016), bitcoin exchange rates tend to reflect the
market, not official exchange rates.

Should the flows allowed by bitcoin become big enough, all countries will have, by default, unrestricted international capital markets.

Thus, with bitcoin, (1) unrestricted
international capital markets is chosen by
default.

Therefore, the only remaining policy choice is between (2) managed exchange rates or (3) independent monetary policy.

If the country chooses (1) and (2), it must use reactive monetary policy to achieve the managed exchange rate.

If the country chooses (1) and (3), it must have a floating exchange rate because it has no remaining tools with which to maintain a managed exchange rate.

Ali et al. (2014), the European Central
Bank (2015) and the Bank for International
Settlements (2015) all concur that cryptocur-
rencies may eventually undermine monetary policy.





With ๐Ÿ’š

Convergence of blockchain with AI and IOT


IoT and AI are growing exponentially

Internet of Things – IoT

A future of transacting intelligent machines


โ€ข Individually, each of these technologies deserves all the attention they’re getting as enablers and disruptors

โ€ข But, taken together?

โ€ข Their transformative effect becomes multiplicative

โ€ข A future driven by machine connectivity, data exchange and commercial services:

  • IoT connects billions of machines and sensors generate unprecedented quantities of real-time data
  • AI enables the machines to act on data and trigger services
  • Blockchain functions are the transaction layer where data and service contracts are securely stored and payments for services are settled

How does blockchain support intelligent connected machines?


โ€ข Smart Contracts enable self-executing and self-enforcing contractual states

  • Custom financial instruments (tokens), records of ownership of an underlying physical asset (smart property), any
  • complex business logic that can be programmable
  • Can such applications be ideal for intelligent (AI) and connected (IoT) machines?
  • These machines are intelligent enough to negotiate contracts, but need a technology allowing them to securely sign and enforce them

โ€ข Digital currencies create new forms of money

  • Programmable and active
  • Will such money be ideal for intelligent (AI) and connected (IoT) machines?
  • These machines will need digital currency to pay for services assigned through the smart contracts

How will the three technologies work together?


IoT – Internet of Things

  • Sensors allow us to cost-effectively gather tremendous amounts of data.
  • Connectivity allows us to transmit/broadcast these data.
  • But, there is a missing element: intelligence to process these data.

AI – Artificial Intelligence

  • Intelligence at the very edges of the network (mini-brains).
  • Combine with IoT and you have the ability to recognize meaningful patterns buried in mountains of data in ways that would be impossible for most humans, or even non-AI algorithms, to do.
  • But, there is a missing element: a secure storage layer for data and a transaction layer for services

DLT (blockchain) – Distributed Ledger Technology

  • Decentralized governance, coupled with no single point of failure, disintermediation, unalterable and searchable records of events.
  • Digital currencies and tokenized custom financial instruments.
  • Combine with AI and IoT and you have a new world of autonomous systems interacting with each other, procuring services from each other and settling transactions.

The technology stack of the future


Technology Stack of the Future

Toward a world of machine commerce


A world of Machine Commerce

M2M will need SSI (self-sovereign identities) – for objects!


Human Identities types

Object identities can be SSI by default

  • Multi-source, multi-verifier
  • Digitally signed, verifiable credentials that can prove issuer, holder and status
  • Secure peer-to-peer connections (permanent or session-based)
  • Exchange full credentials, partial credentials or ZKPs derived from credentials

Next milestone: Decentralized Organizations (DOs)


DOs are good at:

  • Coordinating resources that do not know/trust each other (including hybrid
  • H/M)
  • Governing in a geography-agnostic, censorship-resistant manner
  • Enabling short-term or informal organizational structures  (networks/communities)
  • Tracking and rewarding contribution

Challenges

  • Jurisdictional issues
  • Legislating new types of work for humans and work rules for machines
  • Governance modalities, including external supervision


Challenges


New/upgraded system architectures

โ€ข From legacy to blockchain/AI/IoT-native systems
โ€ข Integration, interoperability, backward compatibility
โ€ข ROI obvious ex post, difficult ex ante โ€“ Bootstrapping

Advanced analytics capabilities

โ€ข As devices at the edge become smarter, the smart contracts enabled by blockchain platforms will require more advanced data analytics capabilities and gateways to the physical world.

New Business Models

  • Disruptive innovation will dominate โ€“ but not without boom-and-bust cycles and big failures along the way.
  • Winners will NOT be the ones focusing on efficiency gains, but on disruptive models.

Key takeaways

โ€ข IoT, AI and DLT (blockchain) are foundational and exponentially growing technologies

  • When combined, they will create a new internet of connected, intelligent and commercially transacting machines
  • An era machine-to-machine (M2M) and human-to-machine (H2M) commerce is likely to emerge, with profound consequences on social and economic dynamics
  • New forms of corporations or organizational formats (code-only, autonomous) will emerge

โ€ข There are numerous challenges that must be overcome

  • IoT has outpaced the human internet, but is still a largely passive, insecure and privacy-vulnerable network
  • AI has made huge leaps, but still requires immense computational resources and is largely incompatible with edge computing
  • DLT is a new technology, largely untested at scale; both smart contracts and digital assets lack the regulatory clarity required for mass adoption

This work is available under a Creative Commons Attribution-Non-Commercial-No Derivatives license
ยฉ University of Nicosia,
Institute for the Future, unic.ac.cy/blockchain





With ๐Ÿ’š

ASICs vs. SuperComputers

Asics
SuperComputers

ASICs vs Supercomputers


Assigning the most powerful supercomputer to mine bitcoin would be comparable to hiring a grandmaster chess player to move a pile of bricks by hand.

The job would get done eventually but the chess player is much better at thinking and playing chess than exerting energy to repetitively move bricks.ย 

Likewise, combining the computing power of the most powerful supercomputers in the world and using them to mine bitcoin would essentially be pointless when compared to the ASIC machines used today.

ASICs are designed to do one thing as quickly and efficiently as possible, whereas a supercomputer is designed to do complicated tasks or math problems.

Since Bitcoin mining is a lottery based on random trial and error rather than complex math, specialization (ASICs) beats general excellence (supercomputers) everytime.


End of Lesson !!!



Made with ๐Ÿ’š by Free Spirit

โœŒ & ๐Ÿ’š



With ๐Ÿ’š