Knowledge is…


Knowledge is Power !!!


WRONG !!!

Knowledge is Power
When Applied !!!


Apollo BTC – A Bitcoin ASIC Miner and Desktop Class Computer running a Full Node

Introducing the FutureBit Apollo BTC

Six CPU Cores. 44 ASIC Cores. 1TB NVMe Based SSD Drive. Quiet. Less than 200 Watts of Power. Made in the USA. This is what the Future of Bitcoin looks like. 

FutureBit Apollo BTC is the world’s first vertically integrated platform bringing the full power of Bitcoin and it’s mining infrastructure in a small, quiet, easy to use desktop device designed for everyday people. 

We have iterated and learned much from our first Apollo product. We realized early on that we focused too much on the mining aspect, and not enough on the software, applications, and services that run Bitcoin. Too many of these services have moved to online centralized websites, and many users have given up on running the core software that powers Bitcoin. 

This must change, as Bitcoin will not continue to be the free, un-censorable, decentralized system it is today if only a few control the mining that powers it, and the nodes that control it. 

At the heart of the new Apollo BTC product is a revamped SBC (Single Board Computer), that is as powerful as any consumer grade desktop system and can run almost any Bitcoin Application natively on the device 24/7. Take it out of the Box, plug it in, power it on, and you are already running a full Bitcoin node without needing to do anything.

Install a wallet of your choice, use any hardware wallet, run BTCPayServer, run a block explorer, run a Lightning Node. All of this is possible with our six core ARM based CPU with 4GB of RAM, and a 1TB NVMe drive that can easily store a FULL non pruned Bitcoin Node. It can power through a Full Node Sync in under 48 hours, which is a record for a device of its class! This is almost an order of magnitude faster than any Raspberry Pi 4 based Node. 

On top of this we have taken our 6 years of experience building ASIC mining devices, and engineered the only American Made TeraHash range Bitcoin mining device that can be silent on your desk, mine Bitcoin in the background 24/7, and only use the power of one light bulb to do it. 

We did this with our optimized PCB design that has carefully placed all 44 hash cores underneath our custom cold-forged aluminum induction heatsink, which draws up to 200 Watts of heat away from the device with our new nearly silent 25mm fan. This results in the Apollo BTC in Turbo Mode being just as quiet as the Apollo LTC in Eco Mode!

Like our previous products, we are super proud that we can continue manufacturing the Apollo BTC in the USA, and are now the only USA based company that delivers Bitcoin ASIC products with a supply chain whole owned in the western hemisphere (no more reliance on Chinese based ASICS, and their willingness to only sell to large farms and the highest bidder). 

OPTIONS

Full Apollo Package: This is our Full Package option that comes with everything you need in the box. The Apollo BTC Unit with our latest controller built in, and our 200W Power supply with power cable. 

Full Apollo Package NO Power Supply: We are also offering the Full Package with no power supply for people that want the plug-n-play experience but have spare 12v ATX power supply. 

Standard: This option is ONLY the Apollo ASIC Miner, with no controller or power supply. Our new hashboard has a micro USB port, and can be used as a USB device. The Full Apollo Node can control multiple standard units through its USB ports. We wanted to give our customers an option to expand their hash power in a cost effective way. If you already have a Raspberry Pi, or Linux/Windows Desktop Computer and a power supply with two PCIE power ports you can also control our Standard unit in this way with our stand alone miner software (please note this setup will be for more advanced users, and the software will be command line based on launch). 

Standard + Power Supply: Same as our Standard unit above, but comes with our 200W Power supply. This is a plug and play solution if you already have a Full Apollo Package. Take it out of the box, plug in the power supply, plug in the micro USB cable to the back of your Full Apollo BTC and it will automatically recognize the second hashboard and start mining! 

  • Compact All-In-One Desktop Bitcoin System (4x6x4in) that mines Bitcoin and any SHA256 based crypto (Bitcoin Cash etc). 
  • Powerful 6 ARM Core CPU with 4GB of LPDDR4 RAM and 1TB NVMe SSD (NOT included in the Standard or Standard + package). 
  • Comes Pre-Installed with a Bitcoin node, and you can install almost any Bitcoin Application
  • Very wide range of operation modes with preset ECO (quiet) mode, BALANCED, and TURBO mode. 
  • 2-3.8 TH/s of SHA256 performance per miner (+/- 5%)
  • 125 Watts in ECO mode, and 200 Watts in TURBO * +/- 10%
  • Can be used as a full Desktop computer with a monitor keyboard and mouse (not included), or through our Web UI
  • Connect almost any peripheral with our USB 3.0 ports, USB C port, HDMI, AC Wifi, and Bluetooth 
  • Clocks and Power is fully customizable by user with easy to use interface
  • Hashboard now monitors both voltage and power draw for accurate measurements*
  • Custom designed cold forged hexagonal pin heatsink with leading thermal performance for the quietest ASIC miner in operation!
  • 1k-5k RPM Quiet Dual Ball Bearing Fan with automatic thermal management with onboard temperature sensor
  • Controlled via local connection on a web browser similar to antminers. You can simply set it up via smartphone browser. No crazy driver installs, hard to use miner software or scripts needed.
  • Two Six Pin PCIE power connectors for wide-range of power draw
  • Custom Designed all Aluminum case
  • Ships with our own custom built 200W 94% efficient PSU and is ready to run out of the box! (Does NOT come with Standard package). 

 Requirements:

  • Router with an Ethernet cable for initial setup OR Monitor with keyboard and mouse
  • At least a 250 watt 12v power supply with two 6 Pin PCIE connector is required (unless you order our packages that come with our power supply). This is the same connector used by all modern GPUs. Please note even standard units NEED a power supply, they cant be powered through the USB port on the full package unit. 

As I am the owner of two of these beauties, that I have on my office as you saw in the photo above, I took the liberty to make Free-Publicity for the FutureBit Apollo Btc Miner.


Kudos to jstefanop


Source:

https://www.futurebit.io/





With 💚

Trilemma of International Finance

Trilemma of International Finance

The relative value of any two curren-
cies—the exchange rate—is determined
through their sale and purchase on the global foreign exchange market. If government policy interferes with this market by changing the relative supply or demand of currencies, the exchange rate is managed.

The trilemma of international finance, is a restriction on government policy that follows immediately from the interaction of exchange rates, monetary policy and international capital flows.


Trilemma of International Finance

The trilemma states that any country can have only two of the following:

  • (1) Unrestricted international capital markets.
  • (2) A managed exchange rate.
  • (3) An independent monetary policy.

If the government wants a managed exchange rate but does not want to interfere
with international capital flows, it must use
monetary policy to accommodate changes
in the demand for its currency in order to
stabilize the exchange rate.

In the extreme, this would take the form of a currency board arrangement, where the domestic currency is fully backed by a foreign currency (as in the case of Hong Kong).

In such a situation, monetary policy can no longer be used for domestic purposes (it is no longer independent).

If a country wishes to maintain control over monetary policy to reduce domestic unemployment or inflation, for example, it must limit trades of its currency in the international capital market (it no longer has free international capital markets).

A country that chooses to have both unrestricted inter-national capital flows and an independent monetary policy can no longer influence its exchange rate and, therefore, cannot have a managed exchange rate.



Pieters and Vivanco (2016), government
attempts to regulate the globally accessible
bitcoin markets are generally unsuccessful,
and, as shown in Pieters (2016), bitcoin exchange rates tend to reflect the
market, not official exchange rates.

Should the flows allowed by bitcoin become big enough, all countries will have, by default, unrestricted international capital markets.

Thus, with bitcoin, (1) unrestricted
international capital markets is chosen by
default.

Therefore, the only remaining policy choice is between (2) managed exchange rates or (3) independent monetary policy.

If the country chooses (1) and (2), it must use reactive monetary policy to achieve the managed exchange rate.

If the country chooses (1) and (3), it must have a floating exchange rate because it has no remaining tools with which to maintain a managed exchange rate.

Ali et al. (2014), the European Central
Bank (2015) and the Bank for International
Settlements (2015) all concur that cryptocur-
rencies may eventually undermine monetary policy.





With 💚

Welcome…

To the rabbit hole…



Why this crazyness with rabbits ?!? And their holes, you would ask ?!? Why is the rabbit hole so deep ?¿

And what does the rabbit hole has to do with that BitCorn thing  I keep hearing about all over the place ?¿

I like to start from the begining, as I think so I am 😋😂


Rabbit Hole is a play written by David Lindsay-Abaire. It was the recipient of the 2007 Pulitzer Prize for Drama. The play premiered on Broadway in 2006, and it has also been produced by regional theatres in cities such as Los Angeles, Philadelphia and Pittsburgh. The play had its Spanish language premiere in San Juan, Puerto Rico in Autumn of 2010.

The play deals with the ways family members survive a major loss, and includes comedy as well as tragedy. Cynthia Nixon won the 2006 Tony Award for Best Performance by a Leading Actress in a Play for her performance as Becca in the New York production, and the play was nominated for several other Tony awards.


Rabbit Hole


A situation, journey, or process that is particularly strange, problematic, difficult, complex, or chaotic, especially one that becomes increasingly so as it develops or unfolds.

An allusion to “Alice’s Adventures in Wonderland” by Lewis Carroll, it is used especially in the phrase “(go) down the rabbit hole.”

Overhauling the current tax legislation is a rabbit hole I don’t think this administration should go down at this point.I’ve stayed away from drugs and alcohol since coming to college. I have an addictive personality, so I decided to just avoid that rabbit hole altogether.


What does rabbit hole mean?

Used especially in the phrase going down the rabbit hole or falling down the rabbit hole, a rabbit hole is a metaphor for something that transports someone into a wonderfully (or troublingly) surreal state or situation.

On the internet, a rabbit hole frequently refers to an extremely engrossing and time-consuming topic.


Where does rabbit hole come from?


Alice falling down a hole with a jar in hand
Alice’s Adventures in WonderLand

Literally, a rabbit hole is what the animal digs for its home. The earliest written record of the phrase dates back to the 17th century. But the figurative rabbit hole begins with Lewis Carroll’s 1865 classic, Alice’s Adventures in Wonderland.

In its opening chapter, “Down the Rabbit-Hole,” Alice follows the White Rabbit into his burrow, which transports her to the strange, surreal, and nonsensical world of Wonderland.

Since then, Carroll’s rabbit hole has proved a popular and useful reference. The Oxford English Dictionary finds the first allusive rabbit hole in a 1938 edition of The Yale Law Journal: “It is the Rabbit-Hole down which we fell into the Law, and to him who has gone down it, no queer performance is strange.”

Over much of the 20th century, rabbit hole has been used to characterize bizarre and irrational experiences. It’s especially used to reference magical, challenging, and even dangerous places or positions, similar to Carroll’s topsy-turvy Wonderland.

Rabbit hole has many metaphorical applications—from frustrating red tape to the mind-bending complexity of science to hallucinations during altered states—all united by a common sense of passing into some labyrinthine, logic-defying realm that, once entered, is hard to get out of.

One can fall down the rabbit hole of government bureaucracy, healthcare, obtaining a green card, tax law, the political economy of modern Japan, puberty, college admissions, or quantum mechanics.

If you’re Neo in the hit film The Matrix, you can take the red pill—a pill that shows you the truth, as opposed to the blue pill, which keeps you in ignorance—and “see how deep the rabbit hole goes.”

In a related note, some people literally take pills and go down the rabbit hole of a psychedelic drug trip.

But as Kathryn Schulz observed for The New Yorker in 2015, rabbit hole has further evolved in the information age: “These days…when we say that we fell down the rabbit hole, we seldom mean that we wound up somewhere psychedelically strange. We mean that we got interested in something to the point of distraction—usually by accident, and usually to a degree that the subject in question might not seem to merit.”

Thanks to the abundance, variety, and instant access of content online, many fall down internet rabbit holes which are often spectacularly, and addictively, niche: scary stories, obscure conspiracy theories, or famous last meals, for instance.

Other rabbit holes tend to be opened up by specific services or social media, which serve users item after item, link after link: Wikipedia, Netflix, Amazon, Facebook, YouTube, and so forth.

These rabbit holes have become so common that people sometimes swap out rabbit for the name of the particular site, e.g. “I’ve fallen down an Instragram hole or “I’m falling down a wikihole.”


Who uses rabbit hole?


From formal documents to internet status updates, rabbit hole is a very popular and widespread expression. Unlike earlier iterations of the metaphor, internet rabbit holes convey less a sense of weirdness, disorientation, or difficulty than they do of an intensely captivating diversion.

Rabbit hole is also showing increasing use as a modifier, e.g. a rabbit-hole question or phenomenon.


Now… that we have a basic and broader understanding about this Hole and it’s rabbit that digged it 😋😂

Let me show you a journey that I took to get to know, understand, admire, be amazed and support the BitCorn everybody is so crazy about …


Bitcoin Glossary


Block

Blocks are found in the Bitcoin blockchain. Blocks connect all transactions together. Transactions are combined into single blocks and are verified every ten minutes through mining. Each subsequent block strengthens the verification of the previous blocks, making it impossible to double spend bitcoin transactions (see double spend below).

BIP

Bitcoin Improvement Proposal or BIP, is a technical design document providing information to the bitcoin community, or describing a new feature for bitcoin or its processes or environment which affect the Bitcoin protocol. New features, suggestions, and design changes to the protocol should be submitted as a BIP. The BIP author is responsible for building consensus within the community and documenting dissenting opinions.

Blockchain

The Bitcoin blockchain is a public record of all Bitcoin transactions. You might also hear the term used as a “public ledger.” The blockchain shows every single record of bitcoin transactions in order, dating back to the very first one. The entire blockchain can be downloaded and openly reviewed by anyone, or you can use a block explorer to review the blockchain online.

Block Height

The block height is just the number of blocks connected together in the block chain. Height 0 for example refers to the very first block, called the “genesis block.”

Block Reward

When a block is successfully mined on the bitcoin network, there is a block reward that helps incentivize miners to secure the network. The block reward is part of a “coinbase” transaction which may also include transaction fees. The block rewards halves roughly every four years; see also “halving.”

Change

Let’s say you are spending $1.90 in your local supermarket, and you give the cashier $2.00. You will get back .10 cents in change. The same logic applies to bitcoin transactions. Bitcoin transactions are made up of inputs and outputs. When you send bitcoins, you can only send them in a whole “output.” The change is then sent back to the sender.

Cold Storage

The term cold storage is a general term for different ways of securing your bitcoins offline (disconnected from the internet). This would be the opposite of a hot wallet or hosted wallet, which is connected to the web for day-to-day transactions. The purpose of using cold storage is to minimize the chances of your bitcoins being stolen from a malicious hacker and is commonly used for larger sums of bitcoins.

Confirmation

A confirmation means that the bitcoin transaction has been verified by the network, through the process known as mining. Once a transaction is confirmed, it cannot be reversed or double spent. Transactions are included in blocks.

Cryptography

Cryptography is used in multiple places to provide security for the Bitcoin network. Cryptography, which is essentially mathematical and computer science algorithms used to encrypt and decrypt information, is used in bitcoin addresses, hash functions, and the blockchain.

Decentralized

Having a decentralized bitcoin network is a critical aspect. The network is “decentralized,” meaning that it’s void of a centralized company or entity that governs the network. Bitcoin is a peer-to-peer protocol, where all users within the network work and communicate directly with each other, instead of having their funds handled by a middleman, such as a bank or credit card company.

Difficulty

Difficulty is directly related to Bitcoin mining (see mining below), and how hard it is to verify blocks in the Bitcoin network. Bitcoin adjusts the mining difficulty of verifying blocks every 2016 blocks. Difficulty is automatically adjusted to keep block verification times at ten minutes.

Double Spend

If someone tries to send a bitcoin transaction to two different recipients at the same time, this is double spending. Once a bitcoin transaction is confirmed, it makes it nearly impossible to double spend it. The more confirmations that a transaction has, the harder it is to double spend the bitcoins.

Full Node

A full node is when you download the entire blockchain using a bitcoin client, and you relay, validate, and secure the data within the blockchain. The data is bitcoin transactions and blocks, which is validated across the entire network of users.

Halving

Bitcoins have a finite supply, which makes them scarce. The total amount that will ever be issued is 21 million. The number of bitcoins generated per block is decreased 50% every four years. This is called “halving.” The final halving will take place in the year 2140.

Hash Rate

The hash rate is how the Bitcoin mining network processing power is measured. In order for miners to confirm transactions and secure the blockchain, the hardware they use must perform intensive computational operations which is output in hashes per second.

Hash (txid)

A transaction hash (sometimes referred to as a transaction ID or txid) is a unique identifier that can be used on any block explorer to look up all of the public details of a particular transaction. Every on-chain transaction has a unique hash made up of a long string of alphanumeric characters.

Mining

Bitcoin mining is the process of using computer hardware to do mathematical calculations for the Bitcoin network in order to confirm transactions. Miners collect transaction fees for the transactions they confirm and are awarded bitcoins for each block they verify.

Pool

As part of bitcoin mining, mining “pools” are a network of miners that work together to mine a block, then split the block reward among the pool miners. Mining pools are a good way for miners to combine their resources to increase the probability of mining a block, and also contribute to the overall health and decentralization of the bitcoin network.

Private Key

A private key is a string of data that shows you have access to bitcoins in a specific wallet. Think of a private key like a password; private keys must never be revealed to anyone but you, as they allow you to spend the bitcoins from your bitcoin wallet through a cryptographic signature.

Proof of Work

Proof of work refers to the hash of a block header (blocks of bitcoin transactions). A block is considered valid only if its hash is lower than the current target. Each block refers to a previous block adding to previous proofs of work, which forms a chain of blocks, known as a blockchain. Once a chain is formed, it confirms all previous Bitcoin transactions and secures the network.

Public Address

A public bitcoin address is cryptographic hash of a public key. A public address typically starts with the number “1.” Think of a public address like an email address. It can be published anywhere and bitcoins can be sent to it, just like an email can be sent to an email address.

RBF

RBF stands for Replace By Fee, and refers to a method that allows a sender to replace a “stuck” or unconfirmed transaction with a new one that uses a higher fee. This is done to make sure a transaction confirms as quickly as possible. The “replacement” transaction uses the same inputs as the original one. This is not considered a double spend, as the receiving address(es) typically remain the same.

Satoshi Nakamoto

Bitcoin’s existence began with an academic paper written in 2008 by a developer under the name of Satoshi Nakamoto. Satoshi is the name used as the original inventor of Bitcoin.

Transaction

A transaction is when data is sent to and from one bitcoin address to another. Just like financial transactions where you send money from one person to another, in bitcoin you do the same thing by sending data (bitcoins) to each other. Bitcoins have value because it’s based on the properties of mathematics, rather than relying on physical properties (like gold and silver) or trust in central authorities, like fiat currencies. 

Wallet

Just like with paper dollars you hold in your physical wallet, a bitcoin wallet is a digital wallet where you can store, send, and receive bitcoins securely. There are many varieties of wallets available, whether you’re looking for a web or mobile solution. Ideally, a bitcoin wallet will give you access to your public and private keys. This means that only you have rightful access to spend these bitcoins, whenever you choose to.


Sources:

https://dictionary.com/

https://wikipedia.com/

https://blockchain.com/

Digital Art by Free Spirit

Made with 💚 by Free Spirit

✌ & 💚



With 💚

Bitcoin Mining – Where the Profitable Future Lies



The Times – January 3, 2009

Bitcoin Genesis Block
Mined 03 January 2009

Cypherpunks Write Code

CODE IS LAW
THE SOONER HUMANKIND ACCEPTS IT,
THE SOONER IT CAN BUILD AROUND IT

Yeah.. I wonder Why 😂


Bitcoin made easy

How a Bitcoin transaction works

A humble Miner


How Bitcoin Mining Works

Mining Difficulty

Bitcoin Halving

Bitcoin Previous Halvings

Pools

Bitcoin Wallets

Bitcoin Stakeholders

Bitcoin Facts

Power to the People

Totalitarian Governments can kiss my 256-bit key

Bitcoin – People’s Money

Bitcoin cannot be Shut Down


The power of the long tail…



Central Bank’s 3 Strategies

F**k them, Enough !!!



Upcoming Smart Contracts Networks

Bitcoin Yearly Candles

Bitcoin Price History – Log Scale

Bitcoin Mining Ecosystem Map

Defi Ecosystem in Ethereum

DeFi Stack: Product& Application View

Syscoin Ecosystem


Syscoin

BSC Ecosystem

Popular Cryptocurrency

Crpto Ecosystem

Public Companies that own Bitcoin

Top Banks investing in Crypto

Bitcoin Inflation vs. Time

When you’re Ready…



Choose Wisely

Make bitcoin thrive, let fiat become humus…



Veritas non Auctoritas
Facit Legem

Most people misunderstand what bitcoin miners actually do, and as a result they don’t fully grasp the level of security provided by bitcoin’s hashrate.

In this article, we’ll explain proof of work in a non-technical way so that you’ll be able to counter the misinformation about supercomputers and quantum computers attacking the Bitcoin network in the future. 

Simply put, mining is a lottery to create new blocks in the Bitcoin blockchain. There are two main purposes for mining:

  1. To permanently add transactions to the blockchain without the permission of any entity.
  2. To fairly distribute the 21 million bitcoin supply by rewarding new coins to miners who spend real world resources (i.e. electricity) to secure the network.

To understand what is actually happening in this lottery system, let’s look at a simple analogy where every Bitcoin hash is equivalent to a dice roll.


Luck, Gambling, and SHA-256


Imagine that miners in the Bitcoin Network are all individuals gambling at a casino. In this example, each of these gamblers have a 1000 sided dice. They roll their die as quickly as possible, trying to get a number less than 10. Statistically, this may take a very long time, but as more gamblers join the game, the time it takes to hit a number less than 10 gets reduced. In short, more gamblers equals quicker rounds.

Once somebody successfully rolls a number less than 10, all gamblers at the table can look down and verify the number. This lucky gambler takes the prize money and the next round begins.

Ultimately, the process of mining bitcoin is very similar. All miners on the network are using Application Specific Integrated Circuits (ASICs), which are specialized computers designed to compute hashes as quickly as possible.

To “compute a hash” simply means plugging any random input into a mathematical function and producing an output.

More hashes per second (i.e. higher hashrate) is equivalent to more dice rolls per second, and thus a greater probability of success.

Miners propose a potential Bitcoin block of transactions, and use this for an input. The block is plugged into the SHA256 hash function which yields a fixed-sized output, known as a hash. A single hash can be computed in less than a millisecond, as it involves no complex math.

If the hash value is lower than the Bitcoin Network difficulty, then the miner who proposed the block wins. If not, then the miner continues trying by computing more hashes.

The successful miner’s block is then added to the blockchain, the miner is rewarded with newly issued bitcoin for their work, and the “next round” begins.


Sources :

https://wikipedia.com/

https://braiins.com/

https://blockdata.com/

https://coin98analytics.com/

https://scoopwhoop.com/

https://stakingrewards.com/

https://syscoin.org/

https://galaxydigitalresearch.com/

https://surveycrest.com/

The Times

The Economist

"Internet of Money" - Andreas Antonopoulus

Hal Finney Quotes

Timothy C. May Quote

Free Spirit Digital Art

!°! If I forgot someone, sorry ! Do tell and I'll add you as a source of inspiration on the list !!! Thanks for understanding !!!


Questions, opinions, critics and requests always welcomed and as time allows will be accomodated !!! 🤓 🙂 😉


Did you find this article helpful?

If so, please consider a donation to help the evolution and development of more helpful articles in the future, and show your support for alternative articles.

Your generosity is 💚 ly appreciated

You can donate in any crypto your 💚 desires 😊

Thank you all for your time !!!

✌ & 💚


Bitcoin (BTC) :

1P1tTNFGRZabK65RhqQxVmcMDHQeRX9dJJ


LiteCoin(LTC) :

LYAdiSpsTJ36EWCJ5HF9EGy9iWGCwoLhed


Ethereum(ETH) :

0x602e8Ca3984943cef57850BBD58b5D0A6677D856


EthereumClassic(ETC) :

0x602e8Ca3984943cef57850BBD58b5D0A6677D856


Cardano(ADA) :

addr1q88c5cccnrqy6xesszzvf7rd4tcz87klt0m0h6uvltywqe8txwmsrrqdnpq27594tyn9vz59zv0n8367lvyc2atvrzvqlvdm9d


BinanceCoin(BNB) :

bnb1wwfnkzs34knsrv2g026t458l0mwp5a3tykeylx


BitcoinCash (BCH)

1P1tTNFGRZabK65RhqQxVmcMDHQeRX9dJJ


Bitcoin SV (BSV)

1P1tTNFGRZabK65RhqQxVmcMDHQeRX9dJJ


ZCash(ZEC) :

t1fSSQX4gEhove9ngcvFafQaMPq5dtNNsNF


Dash(DASH) :

XcWmbFw1VmxEPxvF9CWdjzKXwPyDTrbMwj


Shiba(SHIB) :

0x602e8Ca3984943cef57850BBD58b5D0A6677D856


Tron(TRX) :

TCsJJkqt9xk1QZWQ8HqZHnqexR15TEowk8


Stellar(XLM) :

GBL4UKPHP2SXZ6Y3PRF3VRI5TLBL6XFUABZCZC7S7KWNSBKCIBGQ2Y54


A world where anything is possible…
The choice is yours People !!!


With 💚

The other 6 Billion

A Design For An Efficient Coordinated Financial Computing Platform

A Design For An Efficient Coordinated Financial Computing Platform

Jag Sidhu

Feb 25, 2021·41 min read

Abstract

Bitcoin was the first to attempt to offer a practical outcome in the General’s Dilemma using Crypto Economic rationale and incentives. Ethereum was the first to abstract the concept of Turing completeness within similar frameworks assumed by Bitcoin.

What Syscoin presents is a combination of both Bitcoin and Ethereum with intuitions built on top to achieve a more efficient financial computing platform which leverages coordination to achieve consensus using Crypto Economic rationale and incentives.

We propose a four-layer tech stack using Syscoin as the base (host) layer, which provides an efficient (ie, low gas cost per transaction) platform.

Some of the main advantages include building scalable decentralized applications, the introduction of a decentralized cost model around Ethereum Gas fees.

This new model proposes state-less parallelized execution and verification models while taking advantage of the security offered by the Bitcoin protocol. We may also refer to this as Web 3.0.

Table Of Contents

  • Abstract
  • Introduction
  • Syscoin Platform
  • Masternode Configuration
  • Chain Locks
  • Blockchain as a Computational Court
  • Scalability and Security
  • Efficiency
  • State Liveness and State Safety
  • Avoiding Re-execution of Transactions
  • Validity Proof Systems Overtop Proof-of-Work Systems
  • Quantum Resistance:
  • A Design Proposal for Web 3.0
  • Optimistic vs ZkRollup
  • Decentralized Cost Model
  • State-less Layer 1 Design
  • Related Works
  • Commercial Interests
  • Functional Overview
  • Give Me The Goods
  • Blockchain Foundry
  • Acknowledgements
  • References

Introduction

Syscoin is a cryptocurrency borrowing security and trust models of Bitcoin but with services on top which are conducive for businesses to build distributed applications through tokenization capabilities.

Syscoin has evolved since being introduced in 2013 where it offered a unique set of services through a coloured coin implementation on top of Bitcoin.

These services included aliases (identity), assets (tokens), offers (marketplace), escrow (multisig payments between aliases and marketplaces), and certificates (digital credentials).

In its current iteration, it has evolved to serve availability of consensus rather than data storage itself which requires some liveness guarantees better suited to systems like Filecoin and IPFS.

The recent iteration of Syscoin, version 4.0, streamlined the on-chain footprint to exclusively serve assets, a service which requires on-chain data availability for double-spend protection.

Ultimately, the only data that belongs on the blockchain are proofs that executions occurred (eg, coin transfers, smart contract executions, etc.) and information required to validate those proofs.

We introduced high-throughput payment rails for our asset infrastructure through an innovation we called Z-DAG [1]. This innovation offered real-time probabilistic guarantees of double-spend protection and ledger settlement for real-time point-of-sale. As a result, the token platform is one step closer to mass adoption by providing scalable infrastructure and speed that met or exceeded what was necessary to transact with digital tokens in real-life scenarios.

In addition, a two-way bridge to trustlessly interoperate with Ethereum. This enables Ethereum users to benefit from fast, cheap and secure transactions on Syscoin, and Syscoin users to leverage the Turing complete contract capabilities and ecosystem of Ethereum, all of which exclude custodians or third-parties.

Every decision we’ve made has been with security in mind. We believe that one of the biggest advantages of Syscoin is that it is merge-mined with Bitcoin.

Rather than expend more energy, Syscoin recycles the same energy spent by Bitcoin miners in order to solve blocks while being secured by the most powerful cryptocurrency mining network available.

With this energy efficiency we were able to reduce the subsidy to miners and increase subsidy to masternodes without raising the overall inflation; see Fig 1 for configuration.

Unlike Dashpay, these masternodes are not what you expect, as they have the specific job of running full nodes.

Fig 1: Masternode setup

Syscoin Platform

Today, Syscoin offers an asset protocol and deterministic validators as an enhancement on top of Bitcoin, as summarized below:

  • UTXO Assets
  • Compliance through Notary
  • Fungible and Non-Fungible tokens (Generic Asset infrastructure named SPT — Syscoin Platform Tokens)
  • Z-DAG for fast probabilistic onchain payments, working alongside payment channel systems like Lightning Networks
  • Deterministic validators (Masternodes) which run as Long-Living Quorums for distributed consensus decisions such as Chain Locks
  • Decentralized Governance, 10% of block subsidy is saved to pay out in a governance mechanism through a network wide vote via masternodes
  • Merged-mined with Bitcoin for shared work alongside Bitcoin miners

Masternode Configuration

With 2400+ masternodes running fullnodes, Z-DAG becomes much more dependable, as does the propagation of blocks and potential forks.

The masternodes are bonded through a loss-less strategy of putting 100000 Syscoin in an output and running full nodes in exchange for block rewards.

A seniority model incentivizes the masternodes to share long-term growth by paying them more for the longer period of service. Half of the transaction fees are also shared between the PoW miners and masternodes to ensure long term alignment once subsidy becomes negligible.

The coins are not locked at any point, and there is no slashing condition if masternodes decide to move their coins, the rewards to those masternodes simply stop.

Sharing Bitcoin’s compact block design, it consumes very little bandwidth to propagate blocks assuming the memory pool of all these nodes is roughly synchronized [2].

The traffic on the network primarily consists of propagating the missing transactions to validate these blocks. Having a baseline for a large number of full-nodes that are paid to be running allows us to create a very secure environment for users.

It proposes higher costs to would-be attackers who either have to attempt a 51% attack of Syscoin (effectively also trying to attack the Bitcoin network), or try to game the mesh network by propagating bad information which is made more difficult by incentivized full-nodes.

The health of a decentralized network consists of the following;

(a) the mining component or consensus to produce blocks, and

(b) the network topology to disseminate information in a timely manner in conditions where adversaries might be lurking.

Other attacks related to race conditions in networking or consensus code are mostly negligible as Syscoin follows a rigorous and thorough continuous development process.

This includes deterministic builds, Fuzz tests, ASAN/MSAN/TSAN, functional/unit tests, multiple clients and adequate code coverage.

Syscoin and Bitcoin protocol code bases are merged daily such that the build/signing/test processes are all identical, allowing us to leverage the massive developer base of Bitcoin.

The quality of code is reflective of taking worst case situations into account. The most critical engineers and IT specialists need confidence that value is secure should they decide to move their business to that infrastructure.

It’s true that there are numerous new ideas, new consensus protocols and mechanisms for achieving synchronization among users in a system through light/full node implementations.

However, in our experience in the blockchain industry over the last 8 years, we understand that it takes years, sometimes generations to bring those functionalities to production level quality useful for commercial applications.

Chain Locks

With a subset of nodes offering sybil resistance through the requirement of bonding 100,000 SYS to become active, plus the upcoming deterministic masternode feature in Syscoin 4.2, we have enabled Chain Locks which attempts to solve a long-standing security problem in Bitcoin [3], where Dashcore was the first project to implement this idea [4] which the industry has since widely accepted as a viable solution [5].

Our implementation is an optimized version of this, in that we do not implement Instant Send or Private Send transactions and thus Syscoin’s Chain Lock implementation is much simpler.

Because of merged-mining functionality with Bitcoin, we believe our chain coupled with Chain Locks becomes the most secure via solving Bitcoin’s most vulnerable attack vector, selfish mining.

These Chain Locks are made part of Long-Living Quorums (LLMQ) which leverage aggregatable Boneh–Lynn–Shacham (BLS) signatures that have the property of being able to combine multiple signers in a Distributed Key Generation (DKG) event to sign on decisions. In this setup, a signature can be signed on a group of parties under threshold constraints without any one of those parties holding the private key associated with that signature. In our case, the signed messages would be a ChainLock Signature (CLSIG) which represent claims on what the block hashes represent of the canonical chain [4].

This model suggests a very efficient threshold signature design was needed to be able to quickly come to consensus across the Masternode layer to decide on chain tips and lock chains preventing selfish mining attacks. See [6] to understand the qualities of BLS signatures in the context of multi-sig use cases.

Ethereum 2.0 design centers around the use of BLS signatures through adding precompile opcodes in the Ethereum Virtual Machine (EVM) for the BLS12–381 curve [7] which Syscoin has adopted.

This curve was first introduced in 2017 by Bowe [8] to the ZCash protocol. Masternodes on Syscoin use this curve and have a BLS key that is associated with each validator. There is the performance comparison to ECDSA (Secp256k1) [9] that shows its usefulness in contrast to what Bitcoin and Syscoin natively use for signature verification.

Blockchain as a Computational Court

A computational court is a way of enforcing code execution on the blockchain’s state. This was first introduced by de la Rouvier [10].

Since the inception of  Syscoin  and  Blockchain Foundry we have subscribed to the idea that the blockchain should be used as a court system rather than a transaction processor.

This debate has stemmed from the block size debate in the Bitcoin community [11]. However, with recent revelations in cryptography surrounding Zero-Knowledge Proofs (ZKP) [12] and particularly Zero-Knowledge Succinct Non-Interactive Argument of Knowledge (zk-STARK) [13], we propose a secure ledger strategy using the Bitcoin protocol as a court (ie, host layer), an EVM or eWASM (ie, operating system layer), computational scaling through ZKP (ie, SDK layer) and business verticals (ie, application layer); see Fig 2

Fig 2: Four-layer tech stack

Scalability and Security

Scalability in blockchain environments is typically measured by Total Transactions per Second (TPS).

This means full trustlessness, decentralization and liveness properties as evidenced by something like Bitcoin.

If trade-offs are made to achieve higher scale it means another property is affected.

A full node is one that creates blocks and/or fully validates every block of transactions.

For the purpose of this discussion, we will refrain on expounding on designs where light-clients are used to give semblance of higher throughput, etc.

However, if two nodes are running the same hardware and doing the same work, the one that provides more TPS performance than the other is considered more scalable. This is not to be confused with throughput which is the measure of output that can be increased by simply adding more hardware resources. Hence, more throughput does not mean more scalable.

Some blockchains require the producers of blocks to run on higher specifications, offering higher throughput but not necessarily more scale.

However, there are projects which employ parallel processing to try to achieve higher scale whilst also enforcing more capable hardware to provide a more efficient overall system [33].

As a logical experiment, the throughput of a system divided by the scalability of the system is what we define as efficiency.

In the following sections, we will outline our proposal for improved efficiency.

Efficiency

The holy grail of blockchain design resides in the ability to have a ledger that can claim to be sublinear while retaining consistency, fault tolerance and full availability (ie, CAP Theorem).

This means there are roughly constant costs for an arbitrary amount of computation performed and being secured by that ledger.

This has always been thought of as impossible and it mostly is unless acceptable trade-offs appear in application designs and they are easy to understand and work around.

Most experts make the assumption that an O(1) ledger is simply impossible and thus design blockchains and force applications to work in certain ways as a result.

We will remove such assumptions and let business processes dictate how they work by giving the ability to achieve O(logk n) for some constant k (ie, polylogarithmic) efficiency with trade-offs.

A polylogarithmic design would give the ability for almost infinite scaling over time for all intents and purposes.

The only bottlenecks would be how fast information can be propagated across the network which would improve over time as telecom infrastructure naturally evolves and increases in both capability and affordability.

Put in context, even Lightning Networks for transactional counts qualifies as a form of sublinear scaling on a transactional basis but not per user, as users must necessarily enter the main chain first before entering a payment channel.

It requires the state of the blockchain to include the users joining the system.

This state (the UTXO balances) is the single biggest factor of efficiency degradation in Bitcoin.

Users need to first start on the main chain and then move into the payment channel system to receive money, meaning that scale is at best O (N) where N is the number of users.

There are some solutions to this problem of state storage on Bitcoin by reducing it via an alternative accumulator strategy to the cost of increased bandwidth [14].

This approach would make the chain state-less, however the validation costs would remain linear to the number of transactions being done. When combined with payment channels, only the costs to get in/out are factored into the validation and this offers an interesting design for payments themselves while providing for on-chain availability.

We consider this as a good path for futuristic scalable payments.

Hence, it is not possible to employ that strategy with general computations. With this design, we are still left with the issue on how to do general computations at higher efficiency.

What we present is the ability to have a polylogarithmic chain at the cost of availability for both payments and general computations where business processes dictate availability policies, and users fully understand these limitations when using such systems.

Users may also be provided the ability to ensure availability for themselves and others at their discretion. This will be expounded upon in the following sections.

State Liveness and State Safety

While many compelling arguments can be made migrating to a state-less design [15], it is not possible to achieve sublinear efficiency without sacrificing some other desired component that we outlined above.

To achieve polylogarithmic efficiency it’s necessary to have a mix of state and stateless nodes working together in harmony on a shared ledger [15].

This should be accomplished in such a way that business processes can dictate direction, and users can choose to pay a little more for security either by using a stateful yet very scalable ledgering mechanism or by paying to ensure their own data availability amortized over the life of that user on such systems.

Presenting the ability for users to make these choices allows us to separate the consensus of such systems and reduce overall complexity.

However, in whatever solution we adopt , we need to ensure that the final implementation allow for both the liveness and safety of that state, which are defined as follows:

State Liveness — Transferring coins in a timely manner

State Safety — Private custody

It is important to adhere to these concepts; if one cannot move one’s coins, then it is as useful as if one burned their coins. Hence, if we had third party custody in place, this would give rise to custodial solutions, and lose decentralized and trustless aspects of the solution, which again is not desired.

The options as described would allow users to decide their state liveliness at their own discretion, while state safety is a required constraint throughout any system design we provide. The doorway to possibilities of sublinear design is opened by giving users the ability to decide.

Avoiding Re-execution of Transactions

In order to scale arbitrarily, independent of the number of transactions — a desired property of increasing throughput — one requires a mechanism to avoid re-executing transactions.

Further, ideally it would be able to batch these transactions together for a two-fold scaling proposition.

There are a few mechanisms in literature that attempted to solve re-execution:

(a) TrueBit; (b) Plasma; and © Arbitrum avoided re-execution.

Unfortunately, they require challenge response systems to ensure security, which leads to intricate attack vectors of unbounded risk/reward scenarios.

Multi-Party Computation (MPC) is a mechanism to have parties act under a threshold to decide on actions such as computational integrity of a smart contract. MPC is used in Syscoin for BLS threshold signatures for Chain Locks and Proof-of-Service in quorums of validators deterministically chosen using Fiat-Shamir heuristics on recent block hashes.

The problem with this approach is that validators may become corrupt, hence need to be wrapped in a consensus system along with DKG and random deterministic selection. This was an interesting topic of discovery for the Syscoin team early-on as a way to potentially scale smart contract execution but was ultimately discarded due to the incentive for risk/reward scenarios to favour attacks as the value of the transactions increases.

Hardware enclaves (eg, Intel SGX through remote attestation) were also of particular interest to the Syscoin team as a way to offload execution and avoid re-execution costs.

However, there are a myriad of attack vectors and censorship concerns on the Intel platform . We also should note that the Antarctica model was interesting but required a firmware update from Intel to support such a feature which raises concerns over censorship long term.

The theme amongst all of these approaches is that although re-execution is avoided the communication complexity is largely still linear with the number of transactions on the main chain. The security and trust models are also different from that of the layer 1 assumptions which was not desired.
Lacking solvent solutions to avoid re-execution and enable sublinear overall complexity, we were led — in the development of Syscoin 4.0 — to build a trust-minimized two-way bridge between Syscoin and the Ethereum mainchain, offloading the concerns around smart contracts to Ethereum.

With the advent of such promising technology as ZKP and the optimizations happening around them, we have re-considered the possibilities and believe this will play an important role in the development of Web 3.0. This mathematical breakthrough led us to re-test our assumptions and options related to our desired design.

ZKP allows us the desired superlinear scaling trait we had been looking to achieve but they also offer other benefits; namely privacy is very easy to introduce and will not add detectable costs and complexities to verification on the mainchain.

With users controlling their own data, the mainchain and systems may be designed such that only balance adjustments are recorded, not transaction sets (we will explain the case with full data availability below). In this scenario there is no advantage for a miner to gain to be able to collude with users to launch attacks on systems such as Decentralize Finance (DeFi) pools and provenance of transactions.

The flexibility has to be there though for application developers that need experiences consistent with those we have today with Bitcoin/Syscoin/Ethereum, and to enable the privacy use-cases without requiring extra work, knowledge or costs.

Fig 3: Host and EVM layer

Validity Proof Systems Overtop Proof-of-Work Systems

Prior to the use of Proof Systems, the only option for “Validity Proofs” in a permissionless system involved naive replay, and as such greatly limited scalability; in essence this replay is what is still done today in Layer-1 blockchain (L1) solutions, with the known penalty to scalability.

Proof Systems offer a very appealing trait known as succinctness: in order to validate a state transition, one needs to only verify a proof, and this is done at a cost that is effectively independent of the size of the state transition (ie, polylogarithmic in the size of the state transition).

For maximal financial security, the amount of value being stored should depend on the amount of security provided on the settlement side of the ledger.

Proof-of-Work offers the highest amount of security guarantees. Our next generation financial systems begin with optimal ledgering security and add proof systems on top for scaling. Block times are not as important in a world where most users and activity are on Layer-2 blockchain (L2) validity proof based systems.

This liberates engineers who are focused on scalability to define blocks better; safe block times plus the maximal amount of data bandwidth that can be safely propagated in a time sensitive manner across full nodes in the network.

In Syscoin there are incentivized full nodes (ie, deterministic masternodes), so again we can maximize the bandwidth of ledgering capabilities while retaining Bitcoin Proof-of-Work (PoW) security through merged-mining.

Quantum Resistance:

Table 1: Estimates of quantum resilience for current cryptosystems (see [20])

As seen in Table 1, hashing with the SHA256 algorithm is regarded to be quantum safe because it requires Grover’s algorithm to crack in the post-quantum world, and at best the quantum computer will offer only 50% reduction in time to break.

On the other hand, where Shor’s algorithm applies, any pair based cryptographic system will be broken in hours.

For L2, we propose to implement ZKP in the SDK Layer (see Fig 2); namely Non-Interactive Zero Knowledge Proofs (NIZKP).

Popular implementations of NIZKP include Zero-Knowledge Succinct Non-interactive ARgument of Knowledge (zk-SNARKS) and Zero-Knowledge Scalable Transparent ARguments of Knowledge (zk-STARKS).

There are some zk-STARK/zk-SNARK friendly cipher’s employed in zkRollup designs such as MiMC and Pederson hashes for which we lack certainty on classical security, yet are hopeful and would offer quantum resistance within ZKPs.

It is important to note that Bitcoin was developed with change addresses in mind exposing the hash of a public key requires a quantum computer to use Grover’s Algorithm in order to attempt stealing that Bitcoin. Each time a Bitcoin Unspent Transaction Output (UTXO) is spent, the public key is exposed and a new change address — which does not expose the public key — is used as change.

With this in mind, any scalable L2 solution should be quantum resistant because otherwise we undermine Bitcoin design as the gold standard of security.

Fig 4: zkSync Rollup design

A Design Proposal for Web 3.0

The following describes the 4-layers (see Fig 2) of Syscoin’s proposed tech stack for Web 3.0:

[Host Layer] Bitcoin’s design is the gold standard for security and decentralization.

Proof-of-work and Nakamoto Consensus settlement security are widely regarded by academics as the most hardened solution for ledgering value.

It’s possible this may change, however it’s also arguable that the intricate design encompassing Game Theory, Economics, risk reward ratios for attack, and the minimal amounts of compromising attack vectors is likely not to change for the foreseeable future.

UTXO’s (and payments with them) are more efficient than account-based or EVM-based. That said, Bitcoin itself suffers from not being expressive enough to build abstraction for general computation.

[Operating System Layer]

EVM/eWASM is the gold standard for general computation because of its wide adoption in the community.

Anyone building smart contracts are likely using this model or will continue to use it as the standard for autonomous general computation with consensus.

[SDK Layer]

Zero-knowledge proofs are the gold standard for generalized computation scaling for blockchain applications. They enable one-time execution via a prover and enable aggregate proof checking instead of re-execution of complex transactions.

zk-STARKs or zk-SNARKs using collision resistant hash functions that work with only weak cryptographic assumptions and therefore are quantum safe.

At the moment generalized smart contracts are not there yet but we are quickly approaching the day (eg, Cairo, Zinc) when there will be abstractions made to have most Solidity code trans-compile into a native zero-knowledge aware compiler similar to how .NET runtime and C# allows an abstraction on top of C/C++ as an interpretive layer on top

[Application Layer]

Verticals or applications applying the above SDK to define business goals.

Surprisingly, these ideals represent a design that is not shared with any other project in the industry, including Bitcoin or Ethereum.

We feel these ideals, fashioned together in a singular protocol, could possibly present a grand vision for a “World Computer” blockchain infrastructure.

Syscoin has already implemented Geth + Syscoin nodes in one application instance already (ie, release 4.2), we foresee that it will not prove too challenging to have them cooperate on a consensus basis working together to form a dual chain secured by Syscoin’s PoW.

Fig 5: Proposed design

Fig 5 describes a system where nodes are running two sets of software processes, the Syscoin chain protocol and an EVM/eWASM chain protocol which are kept in sync through putting the EVM tip hash into the Syscoin block. Both have their own individual mempools and effectively the Ethereum contracts, tools and processes can directly integrate as is into the EVM chain as it stands.

Note that the two chains are processes running on the same computer together. Thus a SYS NODE and EVM NODE would be operating together on one machine instance (ie, Masternode) with ability to communicate with each other directly through Interprocess Communication (IPC).

The intersection between the two processes happens in three points:

Miner of the EVM chain collects the latest block hash and places it into the Syscoin block.

When validating Syscoin blocks, nodes confirm the validity of the EVM tip by consulting the EVM chain software locally.

Fees for the EVM chain are to be paid in SYS. We need an asset representing SYS on the EVM chain, which will be SYSX.

We will enable this through a similar working concept that we’ve already established (SysEthereum Bridge).

We may also enable pre-compiles on the EVM chain side to extract Syscoin block hashes and merkle roots to confirm validity of SYS to SYSX burn transactions.

This design separates concerns by not complicating the PoW chain with EVM execution information, keeping the processes separate yet operating within the same node.

To further delineate point 1 (see above), a miner would mine both chains. With Syscoin being merged-mined, the work spent on Bitcoin would be shared to create a Syscoin block that includes the EVM chain within it as a ledgering event representing the latest smart contract execution state (composed of Chain Hash, State Root, Receipt Root, and Transaction Trie Root).

Since the EVM chain has no consensus attached, technically a block can be created at any point in time. Creation of Syscoin and EVM blocks will be near simultaneous, and occur every one minute on average.

Fig 6: Merge mining on Syscoin

As seen in Fig 6, work done on BTC is reused to create SYS blocks through the  merged-mining specification. Concurrently, the miner will execute smart contracts in the memory pool of the node running the EVM chain. Once a chain hash has been established post-execution, it will be put into the coinbase of the Syscoin block and published to the network. Upon receiving these blocks, every node would verify that the EVM chain which they would locally execute (ie, similar to the miner) matches the state described by the Syscoin block.

Technically, one would want to ensure both the latest and previous EVM block hashes inside of their respective Syscoin blocks are valid.

The block->evmblock == evmblock && block->prev == evmblock->prev is all that is needed to link the chains together with work done by Bitcoin which is propagated to Syscoin through AUXPOW and can serve as a secure ledgering mechanism for the EVM chain.

Since (a) we may use eWASM; (b) there are paid full nodes running on the network; and © the mining costs are shared with Bitcoin miners, we should be able to safely increase the amount of bandwidth available in the EVM chain while remaining secure from large uncle orphan rates.

There has been much discussion as to what the safe block size should be on Ethereum. Gas limits are increasing as optimizations are made on the Ethereum network.

However, since this network would be ledgered by the Syscoin chain through PoW, there would be no concern for uncle orphaning of blocks since the blocks must adhere to the policy set inside of the Syscoin block. We should therefore be able to increase bandwidth significantly and parameterize for a system that will scale globally yet still be centered around L2 rollup designs.

A very important distinction here is that the design of Ethereum 2.0 centers around a Beacon chain and sharding served by a Casper consensus algorithm. The needs of the algorithm require a set of finality guarantees necessitating a move towards Proof-of-Stake (PoS).1

This has large security implications for which we may not have formal analysis for a long time, however we do know it comes with big risk.

We offer similar levels of scalability on a network while retaining Nakamoto Consensus security. The simpler design which has been market tested and academically verified to work would lead to a more efficient system as a whole with less unknown and undocumented attack vectors.

The only research that would need to be made therefore is on the optimal parameterization of the gas limit taking into account an L2 centric system but also a safe number of users we expect to be able to serve before fee market mechanisms begin to regulate the barrier of entry for these users.

This proposed system should be scalable enough to serve the needs of global generalized computation while sticking to the core fundamentals set forth in the design ideals above. Our upcoming whitepaper will have more analysis on these numbers but we include some theoretical scaling metrics at the end of this article.

Optimistic vs ZkRollup

ZKP are excellent for complex calculations above and beyond simple balance transfers. For payments, we feel UTXO payment channels combined with something like Z-DAG is an optimal solution.

However, we are left with rollup solutions for generalized computation involving more complex calculations requiring consensus.

Whatever solution we adopt has to be secured by L1 consensus that is considered decentralized and secure, which we achieve via merged-mining with Bitcoin.

There are two types of rollup solutions today:

(a) Optimistic roll ups (OR); and (b) zkRollups; which offer trade-offs.

Consensus about which chain or network you’re on is a really hard problem that is solved for us by Nakamoto consensus. We build on that secure longest chain rule (supplemented by Chain Locks to prevent selfish mining) to give us the world-view of the rollup states. The executions themselves can be done once by a market of provers, never to be re-executed, only verified, meaning it becomes an almost constant cost on an arbitrarily large number of executions batched together. With OR you have the same world-view but the world-view is editable without verifying executions. The role of determining the validity of that world-view is delegated to someone watching who provides guarantees through crypto-economics. Zero-knowledge proofs remove crypto-economics on execution guarantees and replace them with cryptography.

See [26] to see  between fraud proofs (optimistic) vs validity proofs (zk)

Key takeaways from this article are as follows

  • Eliminate a nasty tail risk: theft of funds from OR via intricate yet viable attack vectors;
  • Reduce withdrawal times from 1–2 weeks to a few minutes;
  • Enable fast tx confirmations and exits in practically unlimited volumes;
  • Introduce privacy by default.

One point missing is interoperability. A generalized form of cross-chain bridging can be seen in Chain A locking tokens based on a preimage commitment by Chain B to create a zero-knowledge proof, followed by verification of that proof as the basis for manifesting equivalence on Chain B. Any blockchain with the functionality to verify these proofs could participate in the ecosystem.

Our vision here is described using a zkRollup centric world-view, yet it can be replaced with other technologies should they be able to serve the same purpose. As an infrastructure we are not enforcing one or the other; developers can build on what they feel best suits their needs. We believe we are close to achieving this, and that the technology is nearing the point of being ready for the vision set forth in this article.

Decentralized Cost Model

Decentralized cost models lead to exponential efficiency gains in economies of scale. We set forth a more efficient design paradigm for execution models reflective of user intent. This design uses the UTXO model to reflect simple state transitions and a ZKP system for complex computations leading to state transitions. This leads to better scalability for a system by allowing people to actively make their trade-off within the same ecosystem, driven by the same miners securing that ecosystem backed by Bitcoin itself.

Furthermore, a decentralized cost model contributes to scalability in that ZKP gates can generalize complex computation better than fee-market resources like gas or the CPU/memory markets of EOS, etc.

This leads to better scalability for a system by allowing people to actively make their trade-off within the same ecosystem, driven by the same miners securing that ecosystem backed by Bitcoin itself.

Furthermore, a decentralized cost model contributes to scalability in that ZKP gates can generalize complex computation better than fee-market resources like gas or the CPU/memory markets of EOS, etc. This leads to more deterministic and efficient consumption of resources maximizing efficiency in calculations, and gives opportunity for those to scale up or down based on economic incentives without creating monopolistic opportunities unlike ASIC mining.

In other words, the cost is dictated by what the market can offer, via the cost of compute power (as dictated by Moore’s law), rather than the constrained costs of doing business on the blockchain itself.

This model could let the computing market dictate the price for Gas instead of being managed by miners of the blockchain. The miners would essentially only dictate the costs of the verification of these proofs when they enter the chain rather than the executions themselves.

 happening with ZKP and with a decentralized cost model it will be much easier to understand costs of running prover services as well as know how the costs scale based on the number of users and parameters of systems that businesses would like to employ. All things considered, it will be easier to make accurate decisions on data availability policies and the consensus systems needed to keep the system censorship resistant and secure.

Rollups will be friends, that is, users of one rollup system doing X TPS and users of another doing Y TPS, with the same trust model, will in effect get us to global rates of X*Y (where X is TPS of the sidechains/rollups and Y is the number of sidechains and rollups that exist). X is fairly static in that the execution models of rollups do not change drastically (and if they do, the majority of those rollup or sidechain designs end up switching to the most efficient design for execution over time).

State-less Layer 1 Design

The single biggest limiting factor of throughput in blockchains is  and access to the global state.

More specifically, in Bitcoin it is the UTXO set, and in Ethereum it is the Account Storage and World State tries. State lookups typically require SSD in Ethereum full nodes because real-time processing of transactions of block arrivals are critical to reaching consensus, this is especially the case for newly arriving blocks (ie, every 10–15 seconds).

As state and storage costs rise, the number of full verifying nodes decreases due to the resource consumption of fully validating nodes and providing timely responses to peers. Consequently, network health suffers due to the risks of centralization of consensus amongst the subset peers running full nodes.

State-less designs are an obvious preference to solve problems using alternative mechanisms to validate the chain without requiring continuous updates to the global state.

In a rollup, smart contracts on L1 do not access the global state unless entering or exiting a rollup. Therefore smart contracts that provide full data availability on-chain (ie, zkRollup), would only require state updates to the local set of users within that L2. Under designs where data availability is kept off-chain, there is no state update on L1, unless entering and exiting.

Therefore, it classifies as purely state-less, whereas in zkRollup mode we can consider this partially state-less. Since these L1 contracts are state-less to the global state, nodes on the network can parallelize verification of any executions to the contracts which do not involve entering or exiting. This is in addition to the organic and natural parallel executions of transactions that are composing these rollup aggregated transactions posted on L1.

State-less layer 1 designs also allow for parallelizable smart contract execution verification. The parallelization of smart contracts running on L1 in the EVM model is a recent topic of research that  which involves defining “intent” for the execution of a contract (because nodes do not know ahead of time what the smart contract execution will entail in terms of accessing global state).

Adding in the intent of a transaction as supplied as part of the commitment of that transaction would allow nodes to reject if the execution of that contract did not correspond with the intent, possibly costing the user fees for invalid commitments.

Although these designs may be flexible, they come at the cost of additional complexity through sorting, filtering and general logic that may be susceptible to intricate attacks.

In our case, the transaction can include a field that is understood by the EVM to denote if it is intending to use global state in any way (for rollups typically this would be false) then we can simply reject any access to global states for those specific types of executions.

This would allow nodes to execute these specific types of transactions in parallel knowing that no global state is allowed to access executions. If a transaction is rejected due to incorrectly setting this field the fees are still spent to prevent users from purposefully setting this field incorrectly.

Related Works

The following organizations offer various open source third party L2 scaling solutions:

Starkware is built using a general purpose language (Cairo) with Solidity (EVM) in mind, as is Matter labs with the (Zinc) language. Hermez developed custom circuits tailor-suited to fast transactions and Decentralized Exchange (DEX) like capability. These will be able to directly integrate into Syscoin without modification.

As such, the optimizations and improvements they make should directly be portable to Syscoin, hence becoming partners to our ecosystem.

Aleo uses Zero knowledge EXEcution (Zexe) for zkSNARK proof creation through circuits created from R1CS constraints. The interesting thing about Aleo is that there is a ledger itself that is purpose-built to only verify these Zexe proofs for privacy preserving transactability. The consensus is PoW, while the proof system involves optimizing over the ability to calculate the verifications of these proofs efficiently.

The more efficient these miners become at verifying these proofs, the faster they are able to mine and thus the system provides sybil resistance through providing resources to verify Zexe proofs as a service in exchange for block creation.

However, these proof creations can be done in parallel based on the business logic for the systems the developers need to create. There is no direct need for on-chain custom verification as these can be done in an EVM contract, similar to what Cairo Generic Proving Service (GPS) verifier and Zinc Verification do.

The goal of Aleo is to incentivize miners to create specialized hardware to more efficiently mine blocks with verification proofs.

However, provers can also do this as we have seen with Matter Labs’ recent release of  [27]. It is a desirable property to use PoW to achieve “world-view” consensus in Aleo; however they focus on private transactions. They are typically not batched and employ a recursive outer proof to guarantee execution of an inner proof where the outer proof is sent to the blockchain to be verified. This proof is a limited 2-step recursion, consequently batching of arbitrary amounts of transactions is not supported.

However, as a result the cost of proof verification is relatively constant with a trade-off of limiting the recursion depth. Aleo is not meant to be a scalable aggregator of transactions, but mainly oriented towards privacy in their zk-SNARK constructions using Zexe.

Commercial Interests

Commercial enterprises may start to create proprietary prover technologies where costs will be lower than market in an attempt to create an advantage for user adoption. This design is made possible since the code for the prover is not required for the verifier to ensure that executions are correct. The proof is succinct whether or not the code to make the proof is available.

While the barrier of entry is low in this industry, we’ve seen the open source model and its communities optimize hardware and software and undergo academic peer review using strategies that outpace private funded corporations.

That is plausible to play out over the long term. However, an organic market will likely form on its own, forging its own path leading to mass adoption through capitalist forces.

The point here is that the privately funded vs open source nature of proving services does not change the mechanism of secure and scalable executions of calculations that are eventually rooted to decentralized and open ledgers secured by Bitcoin.

The utmost interesting propositions are the verticals that become possible by allowing infrastructure that is parameterized to scale into those economies where they are needed most, and where trust, security and auditability of value are concerns.

Smart cities, IoT, AI and Digital sovereignty are large markets that intersect with blockchain as a security blanket.

Although ZKP are tremendously useful on their own, applying them to consensus systems for smart contract executions drive them to another level due to the autonomous nature of “code-is-law” and provable deterministic state of logic. We believe a large majority of the next generation economy will depend on many of the ideas presented here.

 is working with commercial and enterprise adopters of blockchain technology. Our direct interaction with clients combined with our many collective years of experience in this field are reflected in this design.

Functional Overview

Fig 7: High-level description

For scalable simple payments, one can leverage our Syscoin Platform Token (SPT) asset infrastructure and payment channels to transact at scale.

Unique characteristics of SPTs include a generalized 8 byte field for the asset ID which is split between the upper and lower 4 bytes; the upper 4 are issued and definable (ie, NFT use cases) and lower 4 are deterministic. This enables the ability to have a generalized asset model supporting both Non-fungible Tokens (NFT) and Fungible Tokens (FT) without much extra cost at the consensus layers. 1 extra byte is used for all tokens at best case and 5 extra bytes are used for NFT at worst case.

See [28] for more information on .

This model promotes multiple assets to be used as input and consequently as outputs, suggesting that atomic swaps between different assets are possible within 1 transaction. This has some desirable implications when using payment channels for use cases such as paying in one currency when merchants receive another atomically.

A multi-asset payment channel is a component that is desired so users are not constrained to single tokens within a network. Composability of assets as well as composability across systems (such as users from one L2 to another) is a core fundamental to UX and convenience that needs to be built into our next generation blockchain components that we believe will enable mass adoption.

The Connext box shows how potentially you can  as described in [29]. This would promote seamless cross-chain L2 communication without the high gas fees. Since these L2’s are operating under an EVM/eWASM model, there are many ways to enable this cross-communication.

An EVM layer will support general smart contracts compatible with existing Ethereum infrastructure and L2 rollups will enable massive scale. The different types of zkRollups will allow businesses and rollup providers to offer ability for custom fee markets (ie, pay for fees in tokens other than base layer token SYS).

In addition, it will remove costs and thus improve scale of systems by offering custom data availability consensus modules. This design discussed here shares similarities to the  where a smart contract would sign off on data availability checks that would get put into the ZKP as part of the validity of a zkBlock which goes on chain.

The overall idea of the zkPorter design is that the zkRollup system would be called a “shard”, and each shard would have a type either operating in “zkRollup” mode or operating in “normal” mode.

Taken from the zkPorter article the essence of it is:

If a shard type is zkRollup, then any transaction that modifies an account in this shard must contain the changes in the state that must be published as L1 calldata (same as a zkRollup).

Any transaction that modifies accounts in at least two different shards must be executed in zkRollup mode.

All other transactions that operate exclusively on the accounts of a specific shard can be executed in normal shard mode (we will call them shard transactions). If a block contains some shard transactions for a shard S, then the following rules must be observed:

  1. The root hash of the subtree of the shard S must be published once, as calldata on L1. This guarantees that users of all other shards will be able to reconstruct their part of the state.
  2. The smart contract of the data availability policy of this shard must be invoked to enforce additional requirements (e.g. verify the signature of the majority of the shard consensus participants).

This concludes that shards can define different consensus modules for data availability (censorship resistance mechanisms) via separating concerns around ledgering the world-view of the state (ie, ZKP that is put on L1 and the data that represents the state. Doing so would allow shards to increase scale, offload costs of data availability to consensus participants.

A few note-worthy examples of consensus for data availability are:

  1. Non-committee, non fraud proof based consensus for data availability checks. No ⅔ online assumption; see  [30].
  2. Sublinear block validation of ZKP system. Use something like  as a data availability proof engine and majority consensus; see  [31].
  3. Use a combination of above, as well as masternode quorum signatures for any of the available quorums to sign a message committing to data availability checks as well as data validity. Using masternodes can provide a deterministic set of nodes to validate decisions as a service. The data can be stored elsewhere accessible to the quorums as they reach consensus that it is indeed valid and available.

Give Me The Goods

You may be wondering what a system like this can offer in terms of scale …

Simple payments: since payment channels work with UTXO’s and also benefit from on-chain scaling via Z-DAG, 16MB blocks (with segwit weight) assumed, we will see somewhere around 8MB-12MB effectively per minute (per block).

We foresee that is sufficient to serve 7 Billion people who may enter and exit the once a year (ie, 2 transactions on chain per person per year) for a total of 14 Billion transactions.

Let’s conservatively assume 8MB blocks and 300 bytes per transaction. Once on a payment channel, the number of transactions is not limited to on-chain bandwidth, but to network related latencies and bandwidth costs. Therefore, we will conclude that our payment scalability will be able to serve billions of people doing 2 on-chain transactions per year which is arguably realistic based on the way we envision payments to unfold; whether that is an L2 or payment channel network that will hold users to pay through instant transaction mechanisms.

On-chain, we have some  [1]; in those cases someone needs to transact for point-of-sale using the Syscoin chain. The solution for payments ends up looking like a hybrid mechanism of on-chain (Z-DAG) and off-chain (ie, payment channel) style payments.

Complex transactions such as smart contracts using zkRollups require a small amount of time to verify each proof. In this case, we assume that we will host data off-chain while using an off-chain consensus mechanism to ensure data availability for censorship resistance; so the only thing that goes on the chain are validity proofs. We will assume that we will assign 16MB blocks for the EVM chain per minute.

A proof size will be about 300kB for about 300k transactions batched together which will take about 60–80ms to verify and roughly 5 to 10 minutes to create such proofs.

These are the   using zk-STARKs which present quantum resistance and no trusted setup.

After speaking with Eli Ben-Sasson, we were made aware that proving and verifications metrics are already developed compared to what is currently presented by Starkware [34].

Hence, zk-SNARKs offer even smaller proofs and verification times at the expense of trusted setups and stronger cryptography assumptions (not post-quantum safe).

We foresee that these numbers will improve over time as the cryptography improves, but current estimates suggest a rough theoretical capacity of around 1 Million TPS.

Starkware was able to process 300k transactions over 8 blocks with a total cost of 94.5M gas; final throughput was 3000 TPS (see Reddit bake-off estimates). As a result, or the following calculations, let’s assume one batch-run to be 300k transactions.

Ethereum can process ~200kB of data per minute, with a cost limit of 50M gas per minute. Therefore, considering the Starkware benchmark test, and assuming a block interval of 13 seconds, we would achieve ~ 3000 TPS (ie, 300 k transactions per batch-run / (8 blocks per batch-run * 13 seconds per block))

It is estimated that Syscoin will be able to process ~16MB of data per minute on the EVM layer (ie, SYSX in Fig 3), which is ~80x gain over Ethereum; thus a cost limit of 4B gas (ie, 80*50M) per minute.

Therefore, if the Starkware benchmark test was run on Syscoin, it is estimated that Syscoin could run the equivalent of 42 batch-runs per minute (ie, 4B gas per minute / 94.5 M gas per batch-run).

That would result in an equivalent of 210 k TPS (ie, 42 batch-runs per minute * 300 k transactions per batch-run / 60 seconds per minute).

If we were to consider using Validum on the Syscoin EVM layer, we estimate that we could achieve 800 batch-runs per minute (ie, 4B gas per minute / 5 M gas per batch-run). That would equate to an equivalent of 4M TPS (ie, 800 batch-runs per minute * 300 k transactions per batch-run / 60 seconds per minute).

Table 2: Gas costs and Total throughput

* Because all transactions are on-chain, which would include state lookups and modifications, it would likely result in a smaller total throughput depending on the node. This would be on average somewhere between 50–150 TPS total due to the state lookup bottlenecks, which are not an issue in a rollup design and can be done in a state-less way on-chain (meaning the throughput can instead be bounded by computational verification of the ZKPs)

**Rollups post the transitions on-chain and Validium does not, but note that the transitions on chain are account transitions and not transactions and so if some accounts interact within the same batch it will be just those account transitions recorded to the chain regardless of how many actual transactions are done between them.This is the minimum TPS with full layer 1 decentralized security. The amortized cost per Tx thus drops as accounts are reused within the This is the minimum TPS with full layer 1 decentralized security. The amortized cost per Tx thus drops as accounts are reused within the batch and the total TPS would subsequently rise.

Optimizations to the verification process are likely and would be required to get to those numbers, but the bandwidth would allow for such scale should those optimizations come to fruition.

For example 800 zk-STARK verifications at roughly 80ms per zk-STARK would take around 64 seconds, however these proofs can be verified in parallel so with a 32-core machine. It would take ~2–3 seconds total spent on these proofs, and likely decrease further with optimizations (note that TPS includes total account adjustments).

Because of the higher throughput capabilities of baseline EVM, we may look to  [32] to thwart DOS attacks.

The aforementioned calculations demonstrate the full State Safety of the mainchain secured by Bitcoin, and no asynchronous network assumptions which make theoretical calculations impractical in many other claims of blockchain throughput due to execution model bottlenecks.

These results were extrapolated based on real results with constant overhead added that becomes negligible with optimizations. It is imperative to note that transactions in this strategy are not re-executable; there is little to no complexity in this model other than verifying succinct proofs. The proof creation strategy is parallelized organically using this model. The verifications on the main chain can also be parallelized as they are executed on separate shards or rollup networks. Dual parallel execution and verification gives exponentially more scalability than other architectures.

Additionally, privacy can be built into these models at minimal to no extra cost, depending on the business model. Lastly, we suggest these are sustainable throughput calculations and not burst capacity numbers which would be much higher (albeit with a marginally higher fee based on fee markets).

For example Ethereum is operating at 15 TPS but there are around 150k transactions pending, and the average cost is about 200 gWei currently. The fee rate is based on the calculation that it takes around 10000 seconds to clear, assuming this many transactions, no new transactions, and there is demand to settle earlier.

Extrapolating on 4M TPS the ratio would become 40B transactions pending with 4M TPS to achieve the same fee rate on Ethereum today assuming the memory pool is big enough on nodes to support that many pending transactions.

Since masternodes on Syscoin are paid to provide uptime, we can expect network bandwidth to scale up naturally to support higher throughput as demand for transaction settlement increases.

Today, the ability to transact at a much higher rate using the same hardware provides the ability for a greater scale than the state-of-the-art in blockchain design without the added desired caveat of avoiding asynchronous network assumptions.

We believe this proposed design will become the new state-of-the-art blockchain, which is made viable due to its security, flexibility and parallelizable computational capacity.

In regards to uncle rates with higher block sizes, keep in mind we make uncle rates and re-organizations in general negligible through the use of the PoW chain mining Syscoin along with Chain Locks. We provide intuition that block sizes can be increased substantially without affecting network health.

Furthermore, the gas limits can be adjusted by miners up to 0.1% from the previous block and so a natural equilibrium can form where even if more than 4B gas is required it can be established based on demand and how well the network behaves with such increases.

There is a lot to unpack with such statements and so we will cover this in a separate technical post as it is out-of-scope for this discussion.

Blockchain Foundry

One of the main reasons for a profit company is to take advantage of some of the aforementioned verticals which we expect to underpin the economies of tomorrow with infrastructure similar to what is presented here.

Since the company’s beginning in 2016, we have spent the majority of our existence designing architecture parameterized to global financial markets.

Breakthroughs in cryptography and consensus designs as described here lead us to formalize these designs to apply to market verticals, formulating new applications and solutions that would not have been possible before.

Specifically, , we believe these ideas can be IP protected without requiring privatization of the entire tech stack. These value-added ideas that will use existing open-source tech stacks enabling a massive network effect of value through incentivization of commercial and enterprise adoption.

These new ideas, innovations and proprietary production quality solutions could steer in a new wave of  for civilization.


References

[1] J. Sidhu, E, Scott, and A. Gabriel, Z-DAG: An interactive DAG protocol for real-time crypto payments with Nakamoto consensus security parameters, Blockchain Foundry Inc, Feb. 2018. Accessed on: Feb 2021. [Online]. Available: 

[2] Bitcoin Core FAQ, Compact Blocks FAQ Accessed on: Feb 2021. [Online]. Available: 

[3] I. Eyal and E. G. Sirer, Majority is not enough: Bitcoin mining is vulnerableProceedings of International Conference on Financial Cryptography and Data Security, pp. 436–454, 2014.

[4] A. Block, Mitigating 51% attacks with LLMQ-based ChainLocks. Accessed on: Feb 2021. [Online], Nov 2018. Available: 

[5] J. Valenzuela, Andreas Antonopoulos Calls Dash ChainLocks “a Smart Way of” Preventing 51% Attacks. Aug 22, 2019. Accessed on: Feb 2021. [Online]. Available: 

[6] D. Boneh, M. Drijvers, and G. Neven, BLS Multi-Signatures With Public-Key Aggregation, Mar 2018. Accessed on: Feb 2021. [Online]. Available: 

[7] J. Drake. Pragmatic signature aggregation with BLS, May 2018. Accessed on: Feb 2021. [Online]. Available: 

[8] S. Bowe, BLS12–381: New zk-SNARK Elliptic Curve Construction, Mar 2017. Accessed on: Feb 2021. [Online]. Available: 

[9] A. Block, BLS: Is it really that slow?, Jul 2018. Accessed on: Feb 2021. [Online]. Available: 

[10] S. de la Rouvier. Interplanetary Linked Computing: Separating Merkle Computing from Blockchain Computational Courts, Jan 2017. Accessed on: Feb 2021. [Online]. Available: 

[11] Anonymous Kid, Why the fuck did Satoshi implement the 1 MB blocksize limit? [Online forum comment], Jan 2018, Accessed on: Feb 2021. [Online]. Available: 

[12] Zero-Knowledge Proofs What are they, how do they work, and are they fast yet? Accessed on: Feb 2021. [Online]. Available: 

[13] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, Scalable, transparent, and post-quantum secure computational integrity, IACR Cryptol, 2018, pp 46

[14] Dryja, T, Utreexo: A dynamic hash-based accumulator optimized for the bitcoin UTXO set, IACR Cryptol. ePrint Arch., 2019, p. 611.

[15] G.I. Hotchkiss, The 1.x Files: The State of Stateless Ethereum, Dec 2019. Accessed on: Feb 2021. [Online]. Available: 

[16] S. Bowe, A. Chiesa, M. Green, I. Miers, P. Mishra, H. Wu: Zexe: Enabling decentralized private computation. Cryptology ePrint Archive, Report 2018/962 (2018). Accessed on: Feb 2021. [Online]. Available: 

[17] A. Nilsson, P.N. Bideh, J. Brorsson, A survey of published attacks on Intel SGX. 2020, arXiv:2006.13598

[18] C. Nelson, Zero-Knowledge Proofs: Privacy-Preserving Digital Identity, Oct 2018. Feb 2021. Accessed on: [Online]. Available: 

[19] D. Boneh, Discrete Log based Zero-Knowledge Proofs, Apr 2019, Accessed on: Feb 2021 [Online]. Available: 

[20] Quantum Computing’s Implications for Cryptography (Chapter 4), National Academies of Sciences, Engineering, and Medicine: Quantum Computing: Progress and Prospects. The National Academies Press, Washington, DC, 2018.

[21] S. Naihin, Goodbye Bitcoin… Hello Quantum, Apr 2019, Accessed on: Feb 2021 [Online]. 

[22] L.T. do Nascimento, S. Kumari, and V. Ganesan, Zero Knowledge Proofs Applied to Auctions, May 2019, Accessed on: Feb 2021 [Online]. Available: 

[23] G., Proof of Stake Versus Proof of Work. Technical Report, BitFury Group, 2015. Accessed on: Feb 2021. [Online]. Available: 

[24] V. Buterin and V. Griffith, Casper the Friendly Finality Gadget. CoRR, Vol. abs/1710.09437, 2017. arxiv: 1710.09437, 

[25] M. Neuder, D.J. Moroz, R. Rao, and D.C. Parkes, Low-cost attacks on Ethereum 2.0 by sub-1/3 stakeholders, 2021. arXiv:2102.02247, 

[26] Starkware, Validity Proofs vs. Fraud Proofs, Jan 2019, Accessed on: Feb 2021, [Online]. Available: 

[27] A. Gluchowski, World’s first practical hardware for zero-knowledge proofs acceleration, Jul 2020, Accessed on: Feb 2021 [Online]. Available: 

[28] Introducing an NFT Platform Like No Other, Accessed on: Feb 2021. [Online]. Available: 

[29] A. Bhuptani, Vector 0.1.0 Mainnet Release, The beginning of a multi-chain Ethereum ecosystem, Jan 2021, Accessed on: Feb 2021. [Online]. Available: 

[30] V. Buterin, With fraud-proof-free data availability proofs, we can have scalable data chains without committees, Jan 2020, Accessed on: Feb 2021. [Online]. Available: 

[31] M. Al-Bassam, A data availability blockchain with sub-linear full block validation, Jan 2020, Accessed on: Feb 2021. [Online]. Available: 

[32] T. Chen, X. Li, Y. Wang, J. Chen, Z Li, X. Luo, M. H. Au, and X. Zhang. An adaptive gas cost mechanism for Ethereum to defend against under-priced DoS attacks. Proceedings of Information Security Practice and Experience — 13th International Conference ISPEC, 2017

[33] Y. Sompolinsky, and A. Zohar, Secure High-rate Transaction Processing in Bitcoin, Proc. 19th Int. Conf. Financial Cryptogr, Data Secur. (FC’20), Jan 2015, pp. 507–527

[34] Starkware Team, Rescue STARK Documentation — Version 1.0, Jul 2020

Shared with 💚 by Free Spirit

✌ & 💚

BitHouse with 💚

Btc-Usd Monthly Returns


Btc-Usd Monthly Returns 2011-2021

Asset Class Total Return over last 10 Years

Numbers talk louder and more truthful than words could ever do !!!

Simple plain numbers that have the answer everyone is looking for 🙂😉

That’s what I love about mathematics, it’s an undeniable Truth !!!

Read and pick your own conclusion folks !!!

Shared with 💚 by Free Spirit


✌ & 💚


DEX Aggregators 2022

Top DEX Aggregators

Decentralized exchange (DEX) aggregators, also known as liquidity aggregators, compile the exchange rates of numerous DEX platforms and show you a list of platforms offering the best value for your crypto trades.

Moreover, you can access a deeper pool of liquidity by trading on multiple DEXs using a single trading dashboard. Think of them as the search engines of the DeFi landscape, scouring DEXs for the best deals so that you can swap your crypto assets with the lowest fees.

1Inch

Although it is a DEX in its own right, 1Inch’s main USP is its position as a top DEX aggregator across multiple blockchains. The network supports trades across major ecosystems like Ethereum and Binance and smaller networks like Polygon, Arbitrum, and Optimism.

As an aggregator, 1Inch gives you access to over 120 liquidity sources, with 68 on Ethereum, 39 on Binance, and 24 on Polygon. With daily trading volumes averaging close to $300 million from 300,000+ active users, it is one of the most active DEX aggregators in 2021.

The native token of the 1Inch DEX is also called 1INCH. It functions as both a utility token and a governance token for the protocol. 1INCH is a multi-chain token available on the Ethereum and Binance Smart Chain.

1Inch is one of the best DEX aggregators for crypto rookies, with detailed documentation and a well-developed Help Center filled with starter guides, FAQs, and more.



Slingshot

Slingshot grew out of DEX.AG, a DEX aggregator platform created in late 2018 as part of a hackathon event. At its launch, it supported seven major DEX, including Uniswap, Kyber, and DDEX.

After million-dollar funding rounds, DEX.AG was rebranded as Slingshot in November 2020. Slingshot works on Ethereum-based protocols – Polygon (formerly MATIC) and Arbitrum One. Across the two, you get access to over 326 exchanges/liquidity sources.

Slingshot is a very popular choice among experienced cryptocurrency traders due to its relative simplicity and advanced functionality. The average daily volumes touching over half a billion dollars is a testament to the platform’s popularity.

However, due to a threadbare interface and lack of easily accessible website FAQs, guides, and documentation, Slingshot is not a very beginner-friendly DEX platform.



Totle Swap

Totle is a DEX aggregator that also dips into synthetic asset providers, allowing traders to engage with tokenized assets of many shapes and sizes. Unfortunately, the platform seems to be dormant, with no updates since mid-2021 and a lack of stats on any major crypto platform.


ParaSwap

ParaSwap is a versatile DEX aggregator supporting Ethereum, Binance, Polygon, and Avalanche blockchains. In addition, it has a native token for liquidity and governance purposes called the PSP.

While it is one of the more feature-packed and beginner-friendly DEX aggregators, ParaSwap is still in the growth phase. In 2021, the platform reported 1.4 million total users over time, with daily transaction volumes peaking around $150 million.

ParaSwap allows you access to swap and payment options across 75 DEX platforms, focusing on better market rates and cheaper gas fees. In addition, decentralized applications (dApps) can also integrate with ParaSwap to better streamline token swaps.


Matcha

Like 1Inch and Slingshot, Matcha is both a DEX aggregator and a decentralized exchange in itself. Powered by 0x Labs, the platform focuses on transparency, lower fees, smart order routing, and easier access.

Thanks to a recent partnership with MoonPay, Matcha can now accept payments in fiat currencies, a first for DEX platforms. This could be very useful for newcomers – you can directly purchase cryptos using regular currency on Matcha and start trading immediately.

Matcha provides access to over 50 liquidity sources and DEX platforms across three blockchain systems – Ethereum, Binance, and Polygon. Despite being one of the younger platforms on this list (launched in 2020), Matcha boasts over 2.5k daily traders. Its daily volumes are close to $150 million.


Uniswap V3

Uniswap is a DEX platform based on the Automated Marker Maker (AMM) model. After its launch in November 2018, the DEX has seen a meteoric rise among crypto circles. As of Q4 2021, it routinely tops the charts of DEX platforms with the largest daily volumes with $5.5 billion.

The platform is currently in its third iteration – Uniswap V3. Based on the Ethereum Blockchain, Uniswap gives you access to over 50 liquidity pools, with 285 cryptocurrencies across more than 350 markets. The USDC-ETH pair alone accounts for over $1.8 billion worth of trades each day.

While not a DEX aggregator per se, Uniswap is still a great option to consider due to its sheer size and reach. Most of the other aggregators on this list have Uniswap as a major partner and source of trading options.


PancakeSwap

PancakeSwap launched in 2020 to work like Uniswap, but on the Binance Smart Chain instead of Ethereum. Like Uniswap, PancakeSwap is a DEX platform with an AMM operating model, with an additional focus on yield farming based on the native CAKE token.

Regardless of the sweet and syrupy “cake” theme, PancakeSwap is a major force on the DeFi scene, thanks to the sheer size of the Binance blockchain. It easily slots into the top three most active DEX platforms, with daily volumes exceeding $2.6 billion.

The platform is user-friendly, with detailed community guides, troubleshooting articles, and customer support. In addition, you can trade in over 30 major cryptos backed by an equal number of high-quality liquidity pools.


SushiSwap

Is based directly on Uniswap, with a fork in the original code created by its anonymous developer who goes by the pseudonym Chef Nomi.

Right from the outset, SushiSwap has courted controversy. To generate liquidity, its founder encouraged users to deposit in Uniswap tokens, leeching away almost $810 million from Uniswap in a “vampire attack.”

Chef Nomi then proceeded to withdraw his liquidity from the project, generating a massive controversy. Ultimately, he backtracked and returned all funds, relinquishing his control over the project to a new team.

Since these early missteps, SushiSwap has maintained healthy growth rates in the crowded arena of Ethereum-based DEX/AMM platforms. It currently ranks in the top ten list, with daily volumes of close to $800 million across 400+ markets.


dYdX

dYdX is a major DEX platform with a heavy focus on reducing the inflated gas prices on Ethereum. It is one of the few platforms to offer gasless deposits to new users who deposit above a certain threshold. The platform has plans to make this a permanent feature.

dYdX is also working closely with StarkWare to deploy a Layer 2 scalability engine designed to reduce gas costs and trading fees further. Using Ethereum Smart Contracts, dYdX enables traders to invest in the crypto-equivalent of futures trading and other derivatives.

Due to its unique position on the Ethereum ecosystem, dYdX has managed to gain ground on other more popular DEX platforms like Uniswap. As a result, at the end of 2021, dYdX is ranked second on the list of the most active DEX platforms, with daily volumes of $5.4 billion.


Raydium

Instead of Ethereum or Binance, the Raydium platform operates on the highly promising Solana blockchain. As a result, the Ethereum-competitor has a vibrant developer ecosystem, and its cryptocurrency has grown at least 16,000% since January 2021.

The increased interest in the Solana blockchain has also helped Raydium, an AMM platform based on the Serum DEX.

The platform gives access to over 430 trading pairs, with Solana-USDT being the most popular.

The native token, also called Raydium, is the foundation of all future apps and projects on the Solana and Serum ecosystems.

The project’s primary focus is to function as the engine of DeFi on Solana. However, with current daily volumes already reaching $300 million, Raydium shows a lot of promise for future growth.


TraderJoe

Launched in 2020 as a less expensive, more efficient alternative to Ethereum,  Avalanche blockchain focuses on decentralized apps.

Its AVAX token has hit all-time high demands in late 2021, thanks to positive media coverage and high-profile partnerships with entities like Deloitte.

This surge has also propelled TraderJoe, the major DEX platform based around Avalanche blockchain, to the top of the DEX pile in recent times. Its pole position in the blockchain ecosystem has helped drive TraderJoe’s daily trades close to $1 billion.

You can trade major cryptos, stake and gain the native JOE token as rewards, lend other cryptos and farm yields on the TraderJoe platform. With low fees and over 170 markets, TraderJoe is a top target for anyone interested in the Avalanche ecosystem.


Top Pick: Uniswap

The Top pick is Uniswap, for its deep liquidity pools, its user-friendliness, and its commitment to continuous innovation.

As the various DeFi ecosystems continue to grow and expand, the importance of DEX aggregators and AMM platforms will increase further.

These platforms serve a vital purpose, finding liquidity and facilitating transactional activity across multiple blockchains.

To say that the future of DeFi, and by extension, the future of finance as we know it, hinges on DEX aggregators would not be an overstatement.


Shared with 💚 by Free Spirit

✌ & 💚


Starting a Bitcoin Mining Business – A Complete Guide

Why Start a Bitcoin Mining Business?

If you love working from home, then you should consider starting an internet based business.

One of the businesses that you can easily start at home with a computer and mining rigs is bitcoin mining.

Simply put, bitcoin is a digital currency that operates independently of any country’s central bank. In order to get an updated value of the worth of a bitcoin, you can make use of Google’s currency converter; it is a reliable platform to know the value of bitcoin each time.

If you are interested in mining bitcoin, then you have two options to follow.

You can choose to mine a block of bitcoins from the computer or you can choose to pool.

If you want quick returns on your investment, then joining a pool is your best option because mining a block of bitcoins from your computer may take you a month or more before you get any return on your investment.

Please note that if you join a pool, you will only get smaller payments, but you can be rest assured that you will get them at a regular basis.

Starting a bitcoin mining business can be rewarding but you would have to compete with other well established bitcoin miners on the World Wide Web. The fact that you will be competing with people from all over the globe is enough reason for you to be result oriented and at the same be creative with your bitcoin mining business.

So, if you have done the required online or offline bitcoin mining related courses, then you might want to venture into this business.

Starting a Bitcoin Mining Business – A Complete Guide

Industry Overview

Bitcoin mining in its simplest term is the practice of adding transaction records to Bitcoin’s public ledger of previous transactions or block chain.

This ledger of previous transactions is called the block chain as it is a chain of blocks. The block chain serves to confirm transactions to the rest of the network as having taken place.

As a matter of fact, Bitcoin miners help keep the Bitcoin network secure by approving transactions.

Mining is indeed an important and integral part of Bitcoin that ensures fairness while keeping the Bitcoin network stable, safe and highly secured.

Bitcoin mining as the name implies is similar to the mining of other commodities: it requires deliberate and calculated effort and it slowly makes new currency available at a rate that looks like the rate at which commodities like gold and copper et al are mined from the ground. Mining is also a mechanism used to introduce Bitcoins into the system.

Bitcoin is a type of digital currency that is created and held electronically; it is a cryptocurrency and a digital payment system that is invented by an unknown programmer, or perhaps a group of programmers. No one controls it.

Unlike Dollars, Euros, Pounds and other currencies, bitcoins are not printed, they are produced by people and businesses running computers all around the world, using software that solves mathematical problems.

If you want to start mining bitcoin, you would need an online wallet where your bitcoins will be stored.

There are several wallet options available online for bitcoin mining. The rule of thumb to follow before choosing an online wallet for your bitcoin mining is to choose a wallet that will allow you save bitcoins, buy bitcoins, use bitcoins and also accept bitcoins as a means of payment.

The Bitcoin (cryptocurrency and a digital payment system) industry is indeed a large internet based industry and pretty much active in countries such as United States of America, United Kingdom, France, Italy, Nigeria, Sweden, Australia, Japan, China, Germany, and Canada et al.

Despite the fact that the bitcoin mining business is still much of a green business, the business will continue to blossom because more and more users will embrace the use of bitcoins in the nearest future.

So, if you have an entrepreneurial mentality and you wish to join a massive technological revolution, you can start your own bitcoin mining business.

The truth is that you can build a bitcoin mining business even if you are not too ICT savvy and have limited capital to invest in software development and infrastructure, as long as you have internet access and you know how to use the internet.

Some of the factors that encourage entrepreneurs to start their own bitcoin mining business could be that the business is easy to set up and the startup capital is indeed affordable; you can actually start your own bitcoin mining business from the comfort of your house.

All you need to do is to create an office somewhere in your house. You don’t necessarily need to see the people you are doing business with since you can transact bitcoin mining business with clients from any part of the world.

Lastly, starting a bitcoin mining business requires professionalism, advanced mathematics skills and a good grasp of how cryptocurrency and the digital payment system works on a global platform.

Besides, you would need to get the required certifications and license and also meet the required standard for such business before you can be allowed to start a bitcoin mining business in the United States.

Starting a Bitcoin Mining Business – Market Research and Feasibility Studies

Demographics and Psychographics

The demographic and psychographic composition of those who require the services of bitcoin miners are not restricted to bitcoin exchange and trading companies and bitcoin traders, people and organizations that make online transactions in your immediate community or state, but it cuts across people on the cyber space who make use of bitcoins from all over the world.

This is so because bitcoin is a cryptocurrency and a digital payment system used basically on the internet hence the leverage to work for people and organization all across the globe.

So, if you are looking towards defining the demographics of your bitcoin mining business, you should make it all encompassing. It should include bitcoin exchange and trading companies and bitcoin traders, programmers, investors, and internet – business oriented people and organizations within and outside the United States.

List of Niche ideas Within the Bitcoin Mining Business That You Can Specialize in

Most bitcoin mining companies tend to operate the general bitcoin mining business that a standard bitcoin mining poll/company is expected to offer, that is why it seems like there are no niche areas in the industry.

But on the other hand, some bitcoin mining company may decide to major in some key areas such as:

  • Bitcoin cloud mining
  • Bitcoin cloud hashing
  • Providing other related bitcoin, cryptocurrency and digital payment system consulting and advisory services

The Level of Competition in the Bitcoin Mining Services Industry

The level of competition in the cryptocurrency and a digital payment system industry does not in any way depend on the location of the business since most people that mine bitcoin can operate from any part of the world and still effectively compete in the bitcoin mining line of business cum cryptocurrency and a digital payment system industry.

When it comes to bitcoin mining, distance is never a barrier when competing for clients especially international clients.

What most clients want is result, hence they are ready to make use of bitcoin miners or bitcoin mining platforms no matter the part of the world they operate from as long as they have good track record and can deliver excellent results when it comes to mining and selling bitcoins to them.

There are several bitcoin miners and bitcoin mining pools scattered all around the United States and in the cyber space.

So, if you choose to start your own bitcoin mining company in the United States, you will definitely meet stiffer competitions not only amongst bitcoin mining companies in the United States, but also all over the globe especially if you choose to specialize in cryptocurrency and digital payment system.

List of Well – Known Brands in the Bitcoin Mining Business

In every industry, there are always brands that perform better or are better regarded by customers and the general public than others. Some of these brands are those that have been in the industry for a long time, while others are best known for the results they deliver.

These are some of the leading bitcoin mining companies (bitcoin mining pools) in the United States of America and also in the globe:

Economic Analysis

As an ICT aspiring entrepreneur who is looking for a business that requires programming and mathematics skills and perhaps minimal startup capital to start, then you can consider starting a bitcoin mining pool.

The cost of running a standard bitcoin mining pool when compared to the turnover you get can be poles apart (this is applicable when you have been able to establish your feet in the industry).

One thing is certain when it comes to the bitcoin mining business and most internet based businesses, you are sure of making profits when you successfully produce results that are measurable.

As a matter of fact, the cost of running the business from start to finish could be restricted to the cost of making phone calls, transportation and internet subscriptions, PR and of course bitcoin mining and hashing hardware and software et al.

Starting Your Bitcoin Mining Company from Scratch vs Buying a Franchise

When it comes to starting a business of this nature, it will pay you to start from the scratch as against buying a franchise.

First and foremost, it is your ability to mine or hash bitcoin that matters not a brand name.

Except you want to join a well-established bitcoin mining pool that fits into your business ideology.

Unfortunately, you can hardly find a franchise of a bitcoin mining pool – company to purchase meaning that if you want to own a bitcoin mining (pool) business, then you must be ready to start from the scratch.

This is so because the business is easy to start if you have the required expertise and it is still pretty much thriving and there are loads of opportunities available to aspiring entrepreneurs that are interested in the industry.

The truth is that it will pay you to start your bitcoin mining company from the scratch. Starting from the scratch will afford you the opportunity to conduct thorough market survey and feasibility studies before choosing a location to launch the business.

Please note that most of the big and successful bitcoin mining companies around started from the scratch and they were able to build a solid business brand.

Possible Threats and Challenges You Will Face When Starting a Bitcoin Mining Business

If you decide to start your own bitcoin mining business today, one of the major challenges you are likely going to face is the presence of well – established bitcoin mining companies who are offering same services that you intend offering. The only way to avoid this challenge is to create your own market.

Some other threats that you are likely going to face as a bitcoin mining company operating in the United States are hosting issues, installation or upkeep troubles, heat, unfavorable government policies, and global economic downturn which usually affects purchasing/spending power. There is hardly anything you can do as regards these threats other than to be optimistic that things will continue to work for your good.

Starting a Bitcoin Mining Business – Legal Matters

Best legal entity to use for this type of business

Generally, you have the options of either choosing a general partnership, limited liability company which is commonly called an LLC, or a sole proprietorship for a business such as a bitcoin mining company.

Ordinarily, general partnership should have been the ideal business structure for a small – scale bitcoin mining business especially if you are just starting out with moderate startup capital.

But people prefer limited liability Company for obvious reasons. As a matter of fact, if your intention is to grow the business and have clients both corporate and individual from all across the United States of America and other countries of the world, then choosing general partnership is not an option for you. Limited Liability Company, LLC will be highly suitable for you.

Setting up an LLC protects you from personal liability. If anything goes wrong in the business, it is only the money that you invested into the limited liability company that will be at risk. It is not so for sole proprietorships and general partnerships. Limited liability companies are simpler and more flexible to operate and you don’t need a board of directors, shareholders meetings and other managerial formalities.

These are some of the factors you should consider before choosing a legal entity for your bitcoin mining (pool) business; limitation of personal liability, ease of transferability, admission of new owners, investors’ expectation and of course taxes.

If you take your time to critically study the various legal entities to use for your bitcoin mining business, you will agree that limited liability company; an LLC is most suitable. You can start this type of business as limited liability company (LLC) and in future convert it to a ‘C’ corporation or an ‘S’ corporation especially when you have the plans of going public.

Catchy Business Name ideas Suitable for a Bitcoin Mining Company

Generally, when it comes to choosing a name for a business, it is expected that you should be creative because whatever name you choose for your business will go a long way to create a perception of what the business represents. Usually it is the norm for people to follow the trend in the industry they intend operating from when naming their business.

Insurance Policies

In the United States and in most countries of the world, you can’t operate a business without having some of the basic insurance policy covers that are required by the industry you want to operate from. So, it is imperative to create a budget for insurance policy covers and perhaps consult an insurance broker to guide you in choosing the best and most appropriate insurance policies for your bitcoin mining business.

Here are some of the basic insurance policy covers that you should consider purchasing if you want to start your own bitcoin mining business in the United States of America:

  • General insurance
  • Health insurance
  • Liability insurance
  • Workers compensation
  • Overhead expense disability insurance
  • Business owner’s policy group insurance
  • Payment protection insurance
  • Intellectual Property Protection/Trademark

If you are considering starting your own bitcoin mining business, usually you may not have any need to file for intellectual property protection/trademark. This is so because the nature of the business makes it possible for you to successfully run the business without having any cause to challenge anybody in court for illegally making use of your company’s intellectual properties.

Is Professional Certification Needed to Run a Bitcoin Mining Business?

Apart from the results you produce, professional certification is one of the main reasons why most bitcoin mining companies stand out.

If you want to make an impact in the Bitcoin industry, you should work towards acquiring all the needed certifications in your area of specialization.

Certification validates your competency and shows that you are highly skilled, committed to your career, and up-to-date in this competitive market.

These are some of the certifications you can work towards achieving if you want to run your own bitcoin mining company:

  • Certified Bitcoin Professional (CBP) | Crypto Currency Certification
  • Blockcerts Certification
  • Cryptocurrency certification
  • Ethereum certification
  • Blockchain professional certification

List of Legal Documents You Need to Run a Bitcoin Mining Company

These are some of the basic legal documents that you are expected to have in place if you want to legally run your own bitcoin mining business in the United States of America:

  • Certificate of Incorporation
  • Business License and Certification
  • Business Plan
  • Non – disclosure Agreement
  • Employment Agreement (offer letters)
  • Operating Agreement for LLCs
  • Insurance Policy
  • Contract documents
  • Online Privacy Policy Document (basically   for online payment portal)
  • Company Bylaws
  • Memorandum of Understanding (MoU)
  • Apostille (for those who intend operating beyond the United States of America) 

Financing Your Bitcoin Mining Company

Aside from the amount required to purchase bitcoin mining software and hardware, bitcoins and of course cryptocurrency and other forms of digital payment required to trade with, starting a bitcoin mining business can be cost effective especially if you choose to run the business from your home, share office space with a friend or make use of a virtual office.

Securing a standard office is part of what will consume a large chunk of your startup capital, but if you choose to start the business on a small scale, you may not have the need to go source for fund to finance the business.

When it comes to financing a business, one of the major factors that you should consider is to write a good business plan.

If you have a good and workable business plan document in place, you may not have to labor yourself before convincing your bank, investors and your friends to invest in your business.

Here are some of the options you can explore when sourcing for start – up capital for your bitcoin mining/trading business:

  • Raising money from personal savings and sale of personal stocks and properties
  • Sell of shares to interested investors
  • Pitching your business idea and applying for business grants and seed funding from donor organizations and angel investors
  • Source for soft loans from your family members and your friends

Choosing a Suitable Location for your Bitcoin Mining Business

Bitcoin mining business and most internet service based type of businesses do not require that you see physically with your clients, hence the location you chose does not necessarily need to be top-notch.

But the fact that you can operate your bitcoin mining business from your home does not mean that location has little influence on the success of a bitcoin mining company.

If you have taken your time to study the bitcoin mining and other internet based businesses, you will realize that they are willing to pay expensive rents in order to stay in an ICT hub; a place with pretty strong internet network and of course a place where ICT activities are at its peak.

It is important to note that a business facility in a good location does not come cheap hence you should be able to allocate enough fund for leasing/renting in your budget.

If you are new to the dynamics of choosing a location for a business such as bitcoin mining business, then you should feel free to talk to a business consultant or a realtor who has a full grasp of the city and perhaps country you intend starting your company.

So, if you are looking for a location for your bitcoin mining company, ensure that it is a place that is located in an ICT hub; a place with pretty strong internet network and of course a place where ICT activities are at its peak.

Of course, you would not want to locate this type of business in the outskirts of town or a place without strong internet network. Your clients should be able to drive down and locate your office with little or no difficulty.

Starting a Bitcoin Mining Business – Technical and Manpower Details

In order to successfully launch a bitcoin mining business, you will definitely need bitcoin mining software apps and hardware such as Application-specific integrated circuit (ASIC) machines and other cryptocurrency and digital payment system related software apps and wallet.

So also, you will need computers, internet facility, telephone, fax machine and office furniture (chairs, tables, and shelves).

When it comes to choosing between renting and leasing an office space, the size of the bitcoin mining company you want to build, and your entire budget for the business should influence your choice.

If you have enough capital to run a standard bitcoin mining company, then you should consider the option of leasing a facility for your office.

As regards the number of employees that you are expected to kick start the business with, you would need to consider your finance before making the decision.

Averagely, you would need a Chief Executive Officer or President (you can occupy this role), an Admin and Human Resource Manager, Bitcoin Miners and Hashers, Programmers and Software Developers, Business Development Executive/marketing Executive, Customer Service Officer or Front Desk Officer, and Accountant.

Over and above, you would need a minimum of 8 key staff to effectively run a medium scale but standard bitcoin mining company.

Please note that there will be times when you are expected to go out of your way to hire experts to help you handle some high – profile internet based currency consultancy contracts especially from big corporations.

If you are just starting out, you may not have the financial capacity or required business structure to retain all the professionals that are expected to work with you which is why you should make plans to partner with other programmers and software app developers and computer engineers that operates as freelancers.

The Service Delivery Process of a Bitcoin Mining Company

It is the tradition in the cryptocurrency industry for bitcoin miners to help keep the Bitcoin network secure by approving transactions.

The truth is that mining is an important and integral part of Bitcoin that ensures fairness while keeping the Bitcoin network stable, safe and secure.

In the cryptocurrency and other forms of digital payment system industry, bitcoin miners use special software to solve math problems and are issued a certain number of bitcoins in exchange. This provides a smart process of issuing the currency and also creates an incentive for more people to mine.

For instance, when a block is discovered, the miners are rewarded a certain number of bitcoins, which is agreed-upon by everyone in the network.

Currently the reward is 6.25 bitcoins and this value will halve every 210,000 blocks.

Additionally, the bitcoin miner is awarded the fees paid by users sending transactions. The fee is an incentive for the bitcoin miner to include the transaction in their block.

It is important to state that a bitcoin mining (pool) company may decide to improvise or adopt any business process and structure that will guarantee them efficiency and flexibility; the above stated business cum services process is not cast on stone.

Starting a Bitcoin Mining Business – The Marketing Plan

Marketing ideas and strategies

As a bitcoin mining company, you would have to prove your worth over and over again before you can be awarded any bitcoin mining and hashing contracts from corporate clients.

So, if you have plans to start your own bitcoin mining company, it will pay you to first build a successful career in the digital payment system industry.

People and organizations will hire your services to help them handle all their bitcoin mining and hashing needs if they know that they are going to get good returns on their investment.

So, when you are drafting your marketing plans and strategies for your bitcoin mining company, make sure that you create a compelling personal and company profile.

Aside from your qualifications and experience, it is important to clearly state in practical terms what you have been able to achieve in time past as it relates to the cryptocurrency industry and the organizations you have worked for in time past.

This will help boost your chances in the market place when sourcing for bitcoin mining and hashing contracts.

Businesses these days are aware of the power of the internet and which is why they will do all they can to maximize the internet to market their services.

In other words, a larger percentage of your marketing efforts should be directed to internet users.

Here are some of the platforms you can utilize to market your bitcoin mining company:

  • Introduce your business by sending introductory letters alongside your brochure to all the bitcoin exchange and trading companies and bitcoin traders, programmers, investors, and internet – business oriented people and organizations within and outside the United States
  • Promptness in bidding for bitcoin mining and hashing contracts from bitcoin exchange and trading companies cum bitcoin traders, programmers, investors, and internet – business oriented people and organizations within and outside the United States
  • Advertise your business in relevant programming magazines, radio and TV stations (make yourself available for bitcoin mining and cryptocurrency related talk shows and interactive sessions on TV and Radio)
  • List your business on local directories
  • Attend international bitcoin mining and cryptocurrency related seminars and business fairs
  • Create different packages for different category of clients in order to work with their budgets
  • Join related associations around you with the main aim of networking and marketing your services; you are likely going to get referrals from such networks
  • Engage the services of online marketing executives and business developers to carry out direct marketing

Factors That Will Help You Get the Right Product Pricing

Some of the key factors that will help you mine or hash bitcoin in a profitable pricing system is to ensure that you work with highly talented programmers and mathematicians in your bitcoin mining pool.

You should also ensure that you get your bitcoin mining software and hardware at good deal not forgetting to run your maintenance as at when due.

Another strategy that will help you offer your bitcoin mining and hashing services at the right price is to ensure that you cut operational and maintenance cost to the barest minimum, and channel your efforts towards marketing and promoting your brand name.

Aside from the fact that this strategy will help you save cost, it will also help you get the right pricing for your products.

Strategies to Boost Your Bitcoin Mining Brand Awareness and Create Your Corporate Identity

If your intention of starting a bitcoin mining company is to grow the business beyond the city where you are going to be operating from to become a national and international brand, then you must be ready to spend money on promotion and advertisement of your brand.

In promoting your brand and corporate identity, you should leverage on both print and electronic media and also social media (the internet).

As a matter of fact, it is cost effective to use the internet and social media platforms to promote your brands, besides it is pretty much effective and wide reaching.

Another strategy is to sponsor relevant programmer/ICT based programs, TV and radio programs, advertise your business in relevant magazines and newspapers. Below are the platforms you can leverage on to boost your brand and to promote and advertise your business.

Place adverts on ICT magazines and related newspapers, radio and TV stations

Encourage the use of word of mouth publicity from your loyal customers

Leverage on the internet and social media platforms like YouTube, Instagram, Facebook, Twitter, LinkedIn, Snapchat, Badoo, Google+ and other platforms to promote your business

Ensure that you position your banners and billboards in strategic positions all around your city

Distribute your fliers and handbills in target areas in and around our neighborhood

Contact bitcoin exchange and trading companies cum bitcoin traders, programmers, investors, and internet – business oriented people and organization within and outside the United States by calling them up and informing them of your organization and the bitcoin mining and hashing services you offer

Advertise your business in your official website and employ strategies that will help you pull traffic to the site

Brand all your official cars and ensure that all your staff members wear your branded shirt or cap at regular intervals.


Did you find this article helpful?

If so, please consider a donation to help the evolution and development of more helpful articles in the future, and show your support for alternative articles.

Your generosity is 💚 ly appreciated

You can donate in any crypto your 💚 desires 😊

Thank you all for your time !!!

✌ & 💚


Bitcoin (BTC) :

1P1tTNFGRZabK65RhqQxVmcMDHQeRX9dJJ


LiteCoin(LTC) :

LYAdiSpsTJ36EWCJ5HF9EGy9iWGCwoLhed


Ethereum(ETH) :

0x602e8Ca3984943cef57850BBD58b5D0A6677D856


EthereumClassic(ETC) :

0x602e8Ca3984943cef57850BBD58b5D0A6677D856


Cardano(ADA) :

addr1q88c5cccnrqy6xesszzvf7rd4tcz87klt0m0h6uvltywqe8txwmsrrqdnpq27594tyn9vz59zv0n8367lvyc2atvrzvqlvdm9d


BinanceCoin(BNB) :

bnb1wwfnkzs34knsrv2g026t458l0mwp5a3tykeylx


BitcoinCash (BCH)

1P1tTNFGRZabK65RhqQxVmcMDHQeRX9dJJ


Bitcoin SV (BSV)

1P1tTNFGRZabK65RhqQxVmcMDHQeRX9dJJ


ZCash(ZEC) :

t1fSSQX4gEhove9ngcvFafQaMPq5dtNNsNF


Dash(DASH) :

XcWmbFw1VmxEPxvF9CWdjzKXwPyDTrbMwj


Shiba(SHIB) :

0x602e8Ca3984943cef57850BBD58b5D0A6677D856


Tron(TRX) :

TCsJJkqt9xk1QZWQ8HqZHnqexR15TEowk8


Stellar(XLM) :

GBL4UKPHP2SXZ6Y3PRF3VRI5TLBL6XFUABZCZC7S7KWNSBKCIBGQ2Y54



Shared with 💚 by Free Spirit

✌ & 💚


Calculate Hashes/s

How can I calculate how many hashes I generate per second?

I have a function which generates hashes from a string:

string GenerateHash(string plainText);

I generate as many hashes as possible with 4 threads.

How do I calculate how many hashes (or megahashes) I generate per second?

Your problem breaks down nicely into 3 separate tasks

  1. Sharing a single count variable across threads
  2. Benchmarking thread completion time
  3. Calculating hashes per/second

Sharing a single count variable across threads

public static class GlobalCounter
{ public static int Value { get;
private set;
} public static void Increment()
{ Value =GetNextValue(Value);
} private static int GetNextValue(int curValue) { returnInterlocked.Increment(ref curValue);
} public static void Reset() { Value = 0; } }

Before you spin off the threads call GlobalCounter.Reset and then in each thread (after each successful hash) you would call GlobalCounter.Increment – using Interlocked.X performs atomic operations of Value in a thread-safe manner, it’s also much faster than lock.

Benchmarking thread completion time

var sw = Stopwatch.StartNew(); Parallel.ForEach(someCollection, someValue => 
{ // generate hash GlobalCounter.Increment();
}); sw.Stop();

Parallel.ForEach will block until all threads have finished

Calculating hashes per second

... sw.Stop(); var hashesPerSecond = GlobalCounter.Value / sw.Elapsed.Seconds;

Did you find this article helpful?

If so, please consider a donation to help the evolution and development of more helpful articles in the future, and show your support for alternative articles.

Your generosity is 💚 ly appreciated

You can donate in any crypto your 💚 desires 😊

Thank you all for your time !!!

✌ & 💚

Bitcoin (BTC) :
1P1tTNFGRZabK65RhqQxVmcMDHQeRX9dJJ

LiteCoin(LTC) :
LYAdiSpsTJ36EWCJ5HF9EGy9iWGCwoLhed

Ethereum(ETH) :
0x602e8Ca3984943cef57850BBD58b5D0A6677D856

EthereumClassic(ETC) :
0x602e8Ca3984943cef57850BBD58b5D0A6677D856

Cardano(ADA)
addr1q88c5cccnrqy6xesszzvf7rd4tcz87klt0m0h6uvltywqe8txwmsrrqdnpq27594tyn9vz59zv0n8367lvyc2atvrzvqlvdm9d

BinanceCoin(BNB)
bnb1wwfnkzs34knsrv2g026t458l0mwp5a3tykeylx

BitcoinCash (BCH)
1P1tTNFGRZabK65RhqQxVmcMDHQeRX9dJJ

BitcoinSV(BSV)
1P1tTNFGRZabK65RhqQxVmcMDHQeRX9dJJ

ZCash(ZEC)
t1fSSQX4gEhove9ngcvFafQaMPq5dtNNsNF

Dash(DASH)
XcWmbFw1VmxEPxvF9CWdjzKXwPyDTrbMwj

Shiba(SHIB)
0x602e8Ca3984943cef57850BBD58b5D0A6677D856

Tron(TRX)
TCsJJkqt9xk1QZWQ8HqZHnqexR15TEowk8

Stellar(XLM)
GBL4UKPHP2SXZ6Y3PRF3VRI5TLBL6XFUABZCZC7S7KWNSBKCIBGQ2Y54

Made with 💚 by Free Spirit

✌ & 💚

Return on Investment (ROI)

What Is Return on Investment (ROI)?

Return on investment (ROI) is a performance measure used to evaluate the efficiency or profitability of an investment or compare the efficiency of a number of different investments.

ROI tries to directly measure the amount of return on a particular investment, relative to the investment’s cost.

To calculate ROI, the benefit (or return) of an investment is divided by the cost of the investment. The result is expressed as a percentage or a ratio.

KEY TAKEAWAYS

  • Return on Investment (ROI) is a popular profitability metric used to evaluate how well an investment has performed.
  • ROI is expressed as a percentage and is calculated by dividing an investment’s net profit (or loss) by its initial cost or outlay.
  • ROI can be used to make apples-to-apples comparisons and rank investments in different projects or assets.
  • ROI does not take into account the holding period or passage of time, and so it can miss opportunity costs of investing elsewhere.

How to Calculate Return on Investment (ROI)

The return on investment (ROI) formula is as follows:

“Current Value of Investment” refers to the proceeds obtained from the sale of the investment of interest. Because ROI is measured as a percentage, it can be easily compared with returns from other investments, allowing one to measure a variety of types of investments against one another.

Understanding Return On Investment (ROI)

ROI is a popular metric because of its versatility and simplicity. Essentially, ROI can be used as a rudimentary gauge of an investment’s profitability. This could be the ROI on a stock investment, the ROI a company expects on expanding a factory, or the ROI generated in a real estate transaction.

The calculation itself is not too complicated, and it is relatively easy to interpret for its wide range of applications. If an investment’s ROI is net positive, it is probably worthwhile. But if other opportunities with higher ROIs are available, these signals can help investors eliminate or select the best options.

Likewise, investors should avoid negative ROIs, which imply a net loss.

For example, suppose Bill invested $1,000 in New Wave AI Corp. in 2017 and sold the shares for a total of $1,200 one year later.

To calculate the return on this investment, divide the net profits ($1,200 – $1,000 = $200) by the investment cost ($1,000), for a ROI of $200/$1,000, or 20%.

With this information, one could compare the investment in New Wave AI with any other projects.

Suppose Bill also invested $2,000 in Web Pirates Inc. in 2014 and sold the shares for a total of $2,800 in 2017. The ROI on Bill’s holdings in Web Pirates would be $800/$2,000, or 40%.

Limitations of Return on Investment (ROI)

Examples like Bill’s (above) reveal some limitations of using ROI, particularly when comparing investments. While the ROI of Jo’s second investment was twice that of the first investment, the time between Jo’s purchase and sale was one year for the first investment but three years for the second.

Bill could adjust the ROI of the multi-year investment accordingly. Since the total ROI was 40%, to obtain the average annual ROI, Bill could divide 40% by 3 to yield 13.33% annualized.

With this adjustment, it appears that although Bill’s second investment earned more profit, the first investment was actually the more efficient choice.

ROI can be used in conjunction with the rate of return (RoR), which takes into account a project’s time frame.

One may also use net present value (NPV), which accounts for differences in the value of money over time, due to inflation.

The application of NPV when calculating the RoR is often called the real rate of return.

Developments in Return On Investment (ROI)

Recently, certain investors and businesses have taken an interest in the development of a new form of the ROI metric, called “social return on investment,” or SROI.

SROI was initially developed in the late 1990s and takes into account broader impacts of projects using extra-financial value (i.e., social and environmental metrics not currently reflected in conventional financial accounts).1

SROI helps understand the value proposition of certain environmental social and governance (ESG) criteria used in socially responsible investing (SRI) practices. For instance, a company may decide to recycle water in its factories and replace its lighting with all LED bulbs. These undertakings have an immediate cost that may negatively impact traditional ROI—however, the net benefit to society and the environment could lead to a positive SROI.

There are several other new flavors of ROI that have been developed for particular purposes. Social media statistics ROI pinpoints the effectiveness of social media campaigns—for example how many clicks or likes are generated for a unit of effort. Similarly, marketing statistics ROI tries to identify the return attributable to advertising or marketing campaigns.

So-called learning ROI relates to the amount of information learned and retained as a return on education or skills training.

As the world progresses and the economy changes, several other niche forms of ROI are sure to be developed in the future.

Frequently Asked Questions

How do you calculate return on investment (ROI)?

Return on investment (ROI) is calculated by dividing the profit earned on an investment by the cost of that investment.

For instance, an investment with a profit of $100 and a cost of $100 would have a ROI of 1, or 100% when expressed as a percentage.

Although ROI is a quick and easy way to estimate the success of an investment, it has some serious limitations.

For instance, ROI fails to reflect the time value of money, and it can be difficult to meaningfully compare ROIs because some investments will take longer to generate a profit than others.

For this reason, professional investors tend to use other metrics, such as net present value (NPV) or the internal rate of return (IRR).

What is a good ROI?

What qualifies as a “good” ROI will depend on factors such as the risk tolerance of the investor and the time required for the investment to generate a return.

All else being equal, investors who are more risk-averse will likely accept lower ROIs in exchange for taking less risk.

Likewise, investments that take longer to pay off will generally require a higher ROI in order to be attractive to investors.

What industries have the highest ROI?

Historically, the average ROI for the S&P 500 has been about 10% per year. Within that, though, there can be considerable variation depending on the industry.

For instance, during 2020, technology companies such as Apple Inc., Microsoft Corp., and Amzon.com Inc. generated annual returns well above this 10% threshold.

Meanwhile, companies in other industries, such as energy companies and utilities, generated much lower ROIs and in some cases faced losses year-over-year.

Over time, it is normal for the average ROI of an industry to shift due to factors such as increased competition, technological changes, and shifts in consumer preferences.

Did you find this article helpful?

If so, please consider a donation to help the evolution and development of more helpful articles in the future, and show your support for alternative articles.

Your generosity is 💚 ly appreciated 🤗🙂

You can donate in any crypto your 💚 desires 😊

Thank you all for your time !!!

✌ & 💚


Bitcoin (BTC) :

1P1tTNFGRZabK65RhqQxVmcMDHQeRX9dJJ

LiteCoin(LTC) :

LYAdiSpsTJ36EWCJ5HF9EGy9iWGCwoLhed

Ethereum(ETH) :

0x602e8Ca3984943cef57850BBD58b5D0A6677D856

EthereumClassic(ETC) :

0x602e8Ca3984943cef57850BBD58b5D0A6677D856

Cardano(ADA) :

addr1q88c5cccnrqy6xesszzvf7rd4tcz87klt0m0h6uvltywqe8txwmsrrqdnpq27594tyn9vz59zv0n8367lvyc2atvrzvqlvdm9d

BinanceCoin(BNB) :

bnb1wwfnkzs34knsrv2g026t458l0mwp5a3tykeylx

BitcoinCash (BCH) :

1P1tTNFGRZabK65RhqQxVmcMDHQeRX9dJJ

Bitcoin SV (BSV) :

1P1tTNFGRZabK65RhqQxVmcMDHQeRX9dJJ

ZCash(ZEC) :

t1fSSQX4gEhove9ngcvFafQaMPq5dtNNsNF

Dash(DASH) :

XcWmbFw1VmxEPxvF9CWdjzKXwPyDTrbMwj

Shiba(SHIB) :

0x602e8Ca3984943cef57850BBD58b5D0A6677D856

Tron(TRX) :

TCsJJkqt9xk1QZWQ8HqZHnqexR15TEowk8

Stellar(XLM) :

GBL4UKPHP2SXZ6Y3PRF3VRI5TLBL6XFUABZCZC7S7KWNSBKCIBGQ2Y54

Shared with 💚 by Free Spirit

✌ & 💚

Profitability Guide

Mining Profitability Guide

To calculate mining profitability, you should follow these steps, no matter which calculator you are using:

🔸️Be sure you know your GPU models and the Hash rates.

🔸️Be sure you know the algorithm of the coin.

🔸️Choose the exchange you plan to use for selling coins. This is necessary if you want more precise results.

🔸️Be sure you know your electricity cost.


You can find a list of calculators online that are used by miners, here:

https://bithouseco.home.blog/2021/09/12/mining-calculators/


🔹️ Be sure to keep track of what’s happening in the cryptocurrency world, if you aren’t doing so already. If a coin has problems, it will definitely affect the price and mining profitability, and may even prevent you from selling mined coins.

Made with 💚 by Free Spirit

✌ & 💚

Mining Calculators

How to Calculate Mining Profitability: Top 6 Mining Calculators

Before we can even start mining, we should use one of the many profitability calculators online, that should give us beforehand a better understanding if the GPU, FPGA, ASIC we choose to mine with, will be profitable or not!


🔹️ Online Calculators 🔹️


🔸️ WhatToMine

🔸️ Rubin Mining Calculator

🔸️ CoinWarz

🔸️ CryptoCompare

🔸️ Minerstat

🔸️ Crypto-Coinz

Before even entering sites to buy hardware, Do GOOD…

Do VERY GOOD your R&D

If you think reading is for dorks,nerds, geeks and boring people … Well…

WELCOME TO THE REALM OF THOSE WHO ❤ TO READ !!!


Made with 💚 by Free Spirit

✌ & 💚




With 💚

Vires In Numeris

Vires In Numeris

” It isn’t obvious that the world had to work this way.

But somehow the universe smiles on encryption.”

Julian Assange

Nobody yet knows for sure if the universe’s smile is genuine or not.

It is possible that our assumption of mathematical asymmetries is wrong and we find that P actually equals NP, or we find surprisingly quick solutions to specific problems which we currently assume to be hard.

If that should be the case, cryptography as we know it will cease to exist, and the implications would most likely change the world beyond recognition.

Vires in Numeris”

=

“Strength in Numbers”

epii

Vires in numeris is not only a catchy motto used by bitcoiners.

The realization that there is an unfathomable strength to be found in numbers is a profound one.

Understanding this, and the inversion of existing power balances which it enables changed my view of the world and the future which lies ahead of us.

One direct result of this is the fact that you don’t have to ask anyone for permission to participate in Bitcoin.

There is no page to sign up, no company in charge, no government agency to send application forms to.

Simply generate a large number and you are pretty much good to go.

The central authority of account creation is mathematics.

And God only knows who is in charge of that.

Elliptic curve examples (cc-by-sa Emmanuel Boutet)

Bitcoin is built upon our best understanding of reality.

While there are still many open problems in physics, computer science, and mathematics, we are pretty sure about some things.

That there is an asymmetry between finding solutions and validating the correctness of these solutions is one such thing.

That computation needs energy is another one.

In other words: finding a needle in a haystack is harder than checking if the pointy thing in your hand is indeed a needle or not.

And finding the needle takes work.

The vastness of Bitcoin’s address space is truly mind-boggling.

The number of private keys even more so. It is fascinating how much of our modern world boils down to the improbability of finding a needle in an unfathomably large haystack.

I am now more aware of this fact than ever.

Bitcoin taught me that there is strength in numbers.

Shared with 💚 by Free Spirit✌ & 💚