Seven common mistakes crypto investors and traders make?


Cryptocurrency markets are volatile enough without making simple, easily avoidable mistakes.

Investing in cryptocurrencies and digital assets is now easier than ever before. Online brokers, centralized exchanges and even decentralized exchanges give investors the flexibility to buy and sell tokens without going through a traditional financial institution and the hefty fees and commissions that come along with them.

Cryptocurrencies were designed to operate in a decentralized manner. This means that while they’re an innovative avenue for global peer-to-peer value transfers, there are no trusted authorities involved that can guarantee the security of your assets. Your losses are your responsibility once you take your digital assets into custody.

Here we’ll explore some of the more common mistakes that cryptocurrency investors and traders make and how you can protect yourself from unnecessary losses.

Losing your keys

Cryptocurrencies are built on blockchain technology, a form of distributed ledger technology that offers high levels of security for digital assets without the need for a centralized custodian. However, this puts the onus of protection on asset holders, and storing the cryptographic keys to your digital asset wallet safely is an integral part of this.

On the blockchain, digital transactions are created and signed using private keys, which act as a unique identifier to prevent unauthorized access to your cryptocurrency wallet. Unlike a password or a PIN, you cannot reset or recover your keys if you lose them. This makes it extremely important to keep your keys safe and secure, as losing them would mean losing access to all digital assets stored in that wallet.

Lost keys are among the most common mistakes that crypto investors make. According to a report from Chainalysis, of the 18.5 million Bitcoin (BTC) mined so far, over 20% has been lost to forgotten or misplaced keys.

Storing coins in online wallets

Centralized cryptocurrency exchanges are probably the easiest way for investors to get their hands on some cryptocurrencies. However, these exchanges do not give you access to the wallets holding the tokens, instead offering you a service similar to banks. While the user technically owns the coins stored on the platform, they are still held by the exchange, leaving them vulnerable to attacks on the platform and putting them at risk.

There have been many documented attacks on high-profile cryptocurrency exchanges that have led to millions of dollars worth of cryptocurrency stolen from these platforms. The most secure option to protect your assets against such risk is to store your cryptocurrencies offline, withdrawing assets to either a software or hardware wallet after purchase.

Not keeping a hard copy of your seed phrase

To generate a private key for your crypto wallet, you will be prompted to write down a seed phrase consisting of up to 24 randomly generated words in a specific order. If you ever lose access to your wallet, this seed phrase can be used to generate your private keys and access your cryptocurrencies.

Keeping a hard copy record, such as a printed document or a piece of paper with the seed phrase written on it, can help prevent needless losses from damaged hardware wallets, faulty digital storage systems, and more. Just like losing your private keys, traders have lost many a coin to crashed computers and corrupted hard drives.

Fat-finger error

A fat-finger error is when an investor accidentally enters a trade order that isn’t what they intended. One misplaced zero can lead to significant losses, and mistyping even a single decimal place can have considerable ramifications.

One instance of this fat-finger error was when the DeversiFi platform erroneously paid out a $24-million fee. Another unforgettable tale was when a highly sought-after Bored Ape nonfungible token was accidentally sold for $3,000 instead of $300,000.

Sending to the wrong address

Investors should take extreme care while sending digital assets to another person or wallet, as there is no way to retrieve them if they are sent to the wrong address. This mistake often happens when the sender isn’t paying attention while entering the wallet address. Transactions on the blockchain are irreversible, and unlike a bank, there are no customer support lines to help with the situation.

This kind of error can be fatal to an investment portfolio. Still, in a positive turn of events, Tether, the firm behind the world’s most popular stablecoin, recovered and returned $1 million worth of Tether (USDT) to a group of crypto traders who sent the funds to the wrong decentralized finance platform in 2020. However, this story is a drop in the ocean of examples where things don’t work out so well. Hodlers should be careful while dealing with digital asset transactions and take time to enter the details. Once you make a mistake, there’s no going back.

Over diversification

Diversification is crucial to building a resilient cryptocurrency portfolio, especially with the high volatility levels in the space. However, with the sheer number of options out there and the predominant thirst for outsized gains, cryptocurrency investors often end up over-diversifying their portfolios, which can have immense consequences.

Over-diversification can lead to an investor holding a large number of heavily underperforming assets, leading to significant losses. It’s vital to only diversify into cryptocurrencies where the fundamental value is clear and to have a strong understanding of the different types of assets and how they will likely perform in various market conditions.

Not setting up a stop-loss arrangement

A stop-loss is an order type that enables investors to sell a security only when the market reaches a specific price. Investors use this to prevent losing more money than they are willing to, ensuring they at least make back their initial investment.

In several cases, investors have experienced huge losses because of incorrectly setting up their stop losses before asset prices dropped. However, it’s also important to remember that stop-loss orders aren’t perfect and can sometimes fail to trigger a sale in the event of a large, sudden crash.

That being said, the importance of setting up stop losses to protect investments cannot be understated and can significantly help mitigate losses during a market downturn.

Crypto investing and trading is a risky business with no guarantees of success. Like any other form of trading, patience, caution and understanding can go a long way. Blockchain places the responsibility on the investor, so it’s crucial to take the time to figure out the various aspects of the market and learn from past mistakes before putting your money at risk.

Source: https://bitcointalk.org/





Seven common mistakes crypto investors and traders make?


Cryptocurrency markets are volatile enough without making simple, easily avoidable mistakes.

Investing in cryptocurrencies and digital assets is now easier than ever before. Online brokers, centralized exchanges and even decentralized exchanges give investors the flexibility to buy and sell tokens without going through a traditional financial institution and the hefty fees and commissions that come along with them.

Cryptocurrencies were designed to operate in a decentralized manner. This means that while they’re an innovative avenue for global peer-to-peer value transfers, there are no trusted authorities involved that can guarantee the security of your assets. Your losses are your responsibility once you take your digital assets into custody.

Here we’ll explore some of the more common mistakes that cryptocurrency investors and traders make and how you can protect yourself from unnecessary losses.

Losing your keys

Cryptocurrencies are built on blockchain technology, a form of distributed ledger technology that offers high levels of security for digital assets without the need for a centralized custodian. However, this puts the onus of protection on asset holders, and storing the cryptographic keys to your digital asset wallet safely is an integral part of this.

On the blockchain, digital transactions are created and signed using private keys, which act as a unique identifier to prevent unauthorized access to your cryptocurrency wallet. Unlike a password or a PIN, you cannot reset or recover your keys if you lose them. This makes it extremely important to keep your keys safe and secure, as losing them would mean losing access to all digital assets stored in that wallet.

Lost keys are among the most common mistakes that crypto investors make. According to a report from Chainalysis, of the 18.5 million Bitcoin (BTC) mined so far, over 20% has been lost to forgotten or misplaced keys.

Storing coins in online wallets

Centralized cryptocurrency exchanges are probably the easiest way for investors to get their hands on some cryptocurrencies. However, these exchanges do not give you access to the wallets holding the tokens, instead offering you a service similar to banks. While the user technically owns the coins stored on the platform, they are still held by the exchange, leaving them vulnerable to attacks on the platform and putting them at risk.

There have been many documented attacks on high-profile cryptocurrency exchanges that have led to millions of dollars worth of cryptocurrency stolen from these platforms. The most secure option to protect your assets against such risk is to store your cryptocurrencies offline, withdrawing assets to either a software or hardware wallet after purchase.

Not keeping a hard copy of your seed phrase

To generate a private key for your crypto wallet, you will be prompted to write down a seed phrase consisting of up to 24 randomly generated words in a specific order. If you ever lose access to your wallet, this seed phrase can be used to generate your private keys and access your cryptocurrencies.

Keeping a hard copy record, such as a printed document or a piece of paper with the seed phrase written on it, can help prevent needless losses from damaged hardware wallets, faulty digital storage systems, and more. Just like losing your private keys, traders have lost many a coin to crashed computers and corrupted hard drives.

Fat-finger error

A fat-finger error is when an investor accidentally enters a trade order that isn’t what they intended. One misplaced zero can lead to significant losses, and mistyping even a single decimal place can have considerable ramifications.

One instance of this fat-finger error was when the DeversiFi platform erroneously paid out a $24-million fee. Another unforgettable tale was when a highly sought-after Bored Ape nonfungible token was accidentally sold for $3,000 instead of $300,000.

Sending to the wrong address

Investors should take extreme care while sending digital assets to another person or wallet, as there is no way to retrieve them if they are sent to the wrong address. This mistake often happens when the sender isn’t paying attention while entering the wallet address. Transactions on the blockchain are irreversible, and unlike a bank, there are no customer support lines to help with the situation.

This kind of error can be fatal to an investment portfolio. Still, in a positive turn of events, Tether, the firm behind the world’s most popular stablecoin, recovered and returned $1 million worth of Tether (USDT) to a group of crypto traders who sent the funds to the wrong decentralized finance platform in 2020. However, this story is a drop in the ocean of examples where things don’t work out so well. Hodlers should be careful while dealing with digital asset transactions and take time to enter the details. Once you make a mistake, there’s no going back.

Over diversification

Diversification is crucial to building a resilient cryptocurrency portfolio, especially with the high volatility levels in the space. However, with the sheer number of options out there and the predominant thirst for outsized gains, cryptocurrency investors often end up over-diversifying their portfolios, which can have immense consequences.

Over-diversification can lead to an investor holding a large number of heavily underperforming assets, leading to significant losses. It’s vital to only diversify into cryptocurrencies where the fundamental value is clear and to have a strong understanding of the different types of assets and how they will likely perform in various market conditions.

Not setting up a stop-loss arrangement

A stop-loss is an order type that enables investors to sell a security only when the market reaches a specific price. Investors use this to prevent losing more money than they are willing to, ensuring they at least make back their initial investment.

In several cases, investors have experienced huge losses because of incorrectly setting up their stop losses before asset prices dropped. However, it’s also important to remember that stop-loss orders aren’t perfect and can sometimes fail to trigger a sale in the event of a large, sudden crash.

That being said, the importance of setting up stop losses to protect investments cannot be understated and can significantly help mitigate losses during a market downturn.

Crypto investing and trading is a risky business with no guarantees of success. Like any other form of trading, patience, caution and understanding can go a long way. Blockchain places the responsibility on the investor, so it’s crucial to take the time to figure out the various aspects of the market and learn from past mistakes before putting your money at risk.

Source: https://bitcointalk.org/





Sapere Aude



Etymology

It is from the epithet of a parable, explaining that a fool waits for the stream to stop before crossing, while a wise man forgoes comfort and crosses anyway.

The original use seems to be in Epistle II  of  Horace‘s Epistularum liber primus:

“Dimidium facti qui coepit habet: sapere aude” (“He who has begun is half done: dare to know!”).


Phrase

sapere audē

  1. Have the courage to think for yourself
  2. Have courage to use your own reason“, in the context of committing to tasks that need to be embarked upon, however unpleasant or awkward.
  3. “Dare to be wise”, the motto of the Enlightenment.

Usage notes

Kant answers the question in the first sentence of the essay: “Enlightenment is man’s emergence from his self-incurred immaturity (Unmündigkeit).”

He argues that the immaturity is self-inflicted not from a lack of understanding, but from the lack of courage to use one’s reason, intellect, and wisdom without the guidance of another.

Kant argued that using one’s reason is considered dangerous by most men and all women.

He exclaims that the motto of the Enlightenment is “Sapere aude“! – Dare to be wise!



Source:

https://wikipedia.org/




Trilemma of International Finance

Trilemma of International Finance

The relative value of any two curren-
cies—the exchange rate—is determined
through their sale and purchase on the global foreign exchange market. If government policy interferes with this market by changing the relative supply or demand of currencies, the exchange rate is managed.

The trilemma of international finance, is a restriction on government policy that follows immediately from the interaction of exchange rates, monetary policy and international capital flows.


Trilemma of International Finance

The trilemma states that any country can have only two of the following:

  • (1) Unrestricted international capital markets.
  • (2) A managed exchange rate.
  • (3) An independent monetary policy.

If the government wants a managed exchange rate but does not want to interfere
with international capital flows, it must use
monetary policy to accommodate changes
in the demand for its currency in order to
stabilize the exchange rate.

In the extreme, this would take the form of a currency board arrangement, where the domestic currency is fully backed by a foreign currency (as in the case of Hong Kong).

In such a situation, monetary policy can no longer be used for domestic purposes (it is no longer independent).

If a country wishes to maintain control over monetary policy to reduce domestic unemployment or inflation, for example, it must limit trades of its currency in the international capital market (it no longer has free international capital markets).

A country that chooses to have both unrestricted inter-national capital flows and an independent monetary policy can no longer influence its exchange rate and, therefore, cannot have a managed exchange rate.



Pieters and Vivanco (2016), government
attempts to regulate the globally accessible
bitcoin markets are generally unsuccessful,
and, as shown in Pieters (2016), bitcoin exchange rates tend to reflect the
market, not official exchange rates.

Should the flows allowed by bitcoin become big enough, all countries will have, by default, unrestricted international capital markets.

Thus, with bitcoin, (1) unrestricted
international capital markets is chosen by
default.

Therefore, the only remaining policy choice is between (2) managed exchange rates or (3) independent monetary policy.

If the country chooses (1) and (2), it must use reactive monetary policy to achieve the managed exchange rate.

If the country chooses (1) and (3), it must have a floating exchange rate because it has no remaining tools with which to maintain a managed exchange rate.

Ali et al. (2014), the European Central
Bank (2015) and the Bank for International
Settlements (2015) all concur that cryptocur-
rencies may eventually undermine monetary policy.





With 💚

Convergence of blockchain with AI and IOT


IoT and AI are growing exponentially

Internet of Things – IoT

A future of transacting intelligent machines


• Individually, each of these technologies deserves all the attention they’re getting as enablers and disruptors

• But, taken together?

• Their transformative effect becomes multiplicative

A future driven by machine connectivity, data exchange and commercial services:

  • IoT connects billions of machines and sensors generate unprecedented quantities of real-time data
  • AI enables the machines to act on data and trigger services
  • Blockchain functions are the transaction layer where data and service contracts are securely stored and payments for services are settled

How does blockchain support intelligent connected machines?


Smart Contracts enable self-executing and self-enforcing contractual states

  • Custom financial instruments (tokens), records of ownership of an underlying physical asset (smart property), any
  • complex business logic that can be programmable
  • Can such applications be ideal for intelligent (AI) and connected (IoT) machines?
  • These machines are intelligent enough to negotiate contracts, but need a technology allowing them to securely sign and enforce them

Digital currencies create new forms of money

  • Programmable and active
  • Will such money be ideal for intelligent (AI) and connected (IoT) machines?
  • These machines will need digital currency to pay for services assigned through the smart contracts

How will the three technologies work together?


IoT – Internet of Things

  • Sensors allow us to cost-effectively gather tremendous amounts of data.
  • Connectivity allows us to transmit/broadcast these data.
  • But, there is a missing element: intelligence to process these data.

AI – Artificial Intelligence

  • Intelligence at the very edges of the network (mini-brains).
  • Combine with IoT and you have the ability to recognize meaningful patterns buried in mountains of data in ways that would be impossible for most humans, or even non-AI algorithms, to do.
  • But, there is a missing element: a secure storage layer for data and a transaction layer for services

DLT (blockchain) – Distributed Ledger Technology

  • Decentralized governance, coupled with no single point of failure, disintermediation, unalterable and searchable records of events.
  • Digital currencies and tokenized custom financial instruments.
  • Combine with AI and IoT and you have a new world of autonomous systems interacting with each other, procuring services from each other and settling transactions.

The technology stack of the future


Technology Stack of the Future

Toward a world of machine commerce


A world of Machine Commerce

M2M will need SSI (self-sovereign identities) – for objects!


Human Identities types

Object identities can be SSI by default

  • Multi-source, multi-verifier
  • Digitally signed, verifiable credentials that can prove issuer, holder and status
  • Secure peer-to-peer connections (permanent or session-based)
  • Exchange full credentials, partial credentials or ZKPs derived from credentials

Next milestone: Decentralized Organizations (DOs)


DOs are good at:

  • Coordinating resources that do not know/trust each other (including hybrid
  • H/M)
  • Governing in a geography-agnostic, censorship-resistant manner
  • Enabling short-term or informal organizational structures  (networks/communities)
  • Tracking and rewarding contribution

Challenges

  • Jurisdictional issues
  • Legislating new types of work for humans and work rules for machines
  • Governance modalities, including external supervision


Challenges


New/upgraded system architectures

• From legacy to blockchain/AI/IoT-native systems
• Integration, interoperability, backward compatibility
• ROI obvious ex post, difficult ex ante – Bootstrapping

Advanced analytics capabilities

• As devices at the edge become smarter, the smart contracts enabled by blockchain platforms will require more advanced data analytics capabilities and gateways to the physical world.

New Business Models

  • Disruptive innovation will dominate – but not without boom-and-bust cycles and big failures along the way.
  • Winners will NOT be the ones focusing on efficiency gains, but on disruptive models.

Key takeaways

• IoT, AI and DLT (blockchain) are foundational and exponentially growing technologies

  • When combined, they will create a new internet of connected, intelligent and commercially transacting machines
  • An era machine-to-machine (M2M) and human-to-machine (H2M) commerce is likely to emerge, with profound consequences on social and economic dynamics
  • New forms of corporations or organizational formats (code-only, autonomous) will emerge

• There are numerous challenges that must be overcome

  • IoT has outpaced the human internet, but is still a largely passive, insecure and privacy-vulnerable network
  • AI has made huge leaps, but still requires immense computational resources and is largely incompatible with edge computing
  • DLT is a new technology, largely untested at scale; both smart contracts and digital assets lack the regulatory clarity required for mass adoption

This work is available under a Creative Commons Attribution-Non-Commercial-No Derivatives license
© University of Nicosia,
Institute for the Future, unic.ac.cy/blockchain





With 💚

Au – 💲 – ₿



Gold is a chemical element with the symbol Au (from Latin: aurum) and atomic number 79, making it one of the higher atomic number elements that occur naturally.

It is a bright, slightly orange-yellow, dense, soft, malleable, and ductile metal in a pure form.

Chemically, gold is a transition metal and a group 11 element. It is one of the least reactive chemical elements and is solid under standard conditions.

Gold often occurs in free elemental (native) form, as nuggets or grains, in rocks, veins, and alluvial deposits. It occurs in a solid solution series with the native element  silver (as electrum), naturally alloyed with other metals like copper and palladium, and mineral inclusions such as within pyrite.

Less commonly, it occurs in minerals as gold compounds, often with tellurium (gold tellurides).

A relatively rare element, gold is a precious metal that has been used for coinage,  jewelry, and other arts throughout recorded history.

In the past, a gold standard was often implemented as a monetary policy.

Still, gold coins ceased to be minted as a circulating currency in the 1930s, and the world gold standard was abandoned for a fiat currency system after 1971.

As of 2017, the world’s largest gold producer by far was China, with 440 tonnes per year.

A total of around 201,296 tonnes of gold exists above ground, as of 2020. This is equal to a cube with each side measuring roughly 21.7 meters (71 ft).

Gold’s high malleability, ductility, resistance to corrosion and most other chemical reactions, and conductivity of electricity have led to its continued use in corrosion-resistant electrical connectors in all types of computerized devices (its chief industrial use).

The world consumption of new gold produced is about 50% in jewelry, 40% in investments and 10% in industry.

Gold is also used in infrared shielding,  colored-glass production, gold leafing, and tooth restoration. Certain gold salts are still used as anti-inflammatories in medicine.



F I A T


Fiat money (from Latinfiat“let it be done”) is a type of money that is not backed by any commodity such as gold or silver, and typically declared by a decree from the government to be legal tender.

Throughout history, fiat money was sometimes issued by local banks and other institutions. In modern times, fiat money is generally established by government regulation.

Yuan dynasty banknotes are a
medieval form of fiat money

Fiat money does not have intrinsic value  and does not have use value. It has value only because the people who use it as a medium of exchange agree on its value. They trust that it will be accepted by merchants and other people.

Fiat money is an alternative to commodity money, which is a currency that has intrinsic value because it contains a precious metal such as gold or silver which is embedded in the coin.

Fiat also differs from representative money, which is money that has intrinsic value because it is backed by and can be converted into a precious metal or another commodity.

Fiat money can look similar to representative money (such as paper bills), but the former has no backing, while the latter represents a claim on a commodity (which can be redeemed to a greater or lesser extent).

Government-issued fiat money  banknotes  were used first during the 11th century in China.

Fiat money started to predominate during the 20th century.

Since President Richard Nixon‘s decision to default on the US dollar convertibility to gold in 1971, a system of national fiat currencies has been used globally.

Fiat money can be:

  • Any money that is not backed by a commodity.
  • Money declared by a person, institution or government to be legal tender, meaning that it must be accepted in payment of a debt in specific circumstances.
  • State-issued money which is neither convertible through a central bank to anything else nor fixed in value in terms of any objective standard.
  • Money used because of government decree.
  • An otherwise non-valuable object that serves as a medium of exchange (also known as fiduciary money.)

The term fiat derives from the Latin word  fiat, meaning “let it be done” used in the sense of an order, decree or resolution.


Bitcoin – Digital Gold

The most common, and best, ways to think about bitcoin is as “digital gold”.

Like gold, bitcoin doesn’t rely on a central issuer, can’t have its supply manipulated by any authority, and has fundamental properties long considered important for a monetary good and store of value.

Unlike gold, bitcoin is extremely easy and cheap to “transport”, and trivial to verify its authenticity.

Bitcoin is also “programmable”. This means custody of bitcoin can be extremely flexible. It can be split amongst a set of people (“key holders”), backed up and encrypted, or even frozen-in-place until a certain date in the future. This is all done without a central authority managing the process.

You can walk across a national border with bitcoin “stored” in your head by memorizing a key.

The similarities to gold, plus the unique features possible because bitcoin is purely digital, give it the “digital gold” moniker.

Sharing fundamental properties with gold means it shares use-cases with gold, such as hedging inflation and political uncertainty.

But being digital, bitcoin adds capabilities that are especially relevant in our modern electronic times.

The world does indeed need a digital version of gold.


People’s Money



With 💚

Bitcoin surges after accidentally released Treasury statement


Bitcoin surges after accidentally released Treasury statement



Prices of Bitcoin and other cryptocurrencies have soared following the apparent accidental release of a U.S. Treasury statement on Biden’s expected executive order on digital assets.

The premature statement by Treasury Secretary Yellen, which was dated March 9, has since been removed.

“President Biden’s historic executive order calls for a coordinated and comprehensive approach to digital asset policy.  This approach will support responsible innovation that could result in substantial benefits for the nation, consumers, and businesses. 

It will also address risks related to illicit finance, protecting consumers and investors, and preventing threats to the financial system and broader economy.”

Quote from the now deleted statement

At the time of writing, Bitcoin is up nearly 8% in the last 24 hours.

Biden’s executive order aims to regulate the crypto market while also reaping the benefits of digital currencies.

So far, like most countries in the world, the US has tended to react to developments and has limited itself to pointing to a political-economic approach that is yet to be developed.


Statement by Secretary of the Treasury Janet L. Yellen on President Biden’s Executive Order on Digital Assets


March 9, 2022

WASHINGTON –  U.S. Secretary of the Treasury Janet L. Yellen released the following statement on President Biden’s executive order on digital assets. 

“President Biden’s historic executive order calls for a coordinated and comprehensive approach to digital asset policy.  This approach will support responsible innovation that could result in substantial benefits for the nation, consumers, and businesses.  It will also address risks related to illicit finance, protecting consumers and investors, and preventing threats to the financial system and broader economy.

Under the executive order, Treasury will partner with interagency colleagues to produce a report on the future of money and payment systems. We’ll also convene the Financial Stability Oversight Council to evaluate the potential financial stability risks of digital assets and assess whether appropriate safeguards are in place. And, because the questions raised by digital assets often have important cross-border dimensions, we’ll work with our international partners to promote robust standards and a level playing field.

This work will complement ongoing efforts by Treasury. Already, the Department has worked with the President’s Working Group on Financial Markets, the FDIC, and OCC to study one particular kind of digital asset – stablecoins– and to make recommendations. Under the executive order, Treasury and interagency partners will build upon the recently published National Risk Assessments, which identify key illicit financing risks associated with digital assets. 

As we take on this important work, we’ll be guided by consumer and investor protection groups, market participants, and other leading experts.  Treasury will work to promote a fairer, more inclusive, and more efficient financial system, while building on our ongoing work to counter illicit finance, and prevent risks to financial stability and national security.”


Sources:

https://forbes.com/

https://disclose.tv/

https://bloomberg.com/

https://web.archive.org/web/20220309014601/https://home.treasury.gov/news/press-releases/jy0643




With 💚

ASICs vs. SuperComputers

Asics
SuperComputers

ASICs vs Supercomputers


Assigning the most powerful supercomputer to mine bitcoin would be comparable to hiring a grandmaster chess player to move a pile of bricks by hand.

The job would get done eventually but the chess player is much better at thinking and playing chess than exerting energy to repetitively move bricks. 

Likewise, combining the computing power of the most powerful supercomputers in the world and using them to mine bitcoin would essentially be pointless when compared to the ASIC machines used today.

ASICs are designed to do one thing as quickly and efficiently as possible, whereas a supercomputer is designed to do complicated tasks or math problems.

Since Bitcoin mining is a lottery based on random trial and error rather than complex math, specialization (ASICs) beats general excellence (supercomputers) everytime.


End of Lesson !!!



Made with 💚 by Free Spirit

✌ & 💚



With 💚

Welcome…

To the rabbit hole…



Why this crazyness with rabbits ?!? And their holes, you would ask ?!? Why is the rabbit hole so deep ?¿

And what does the rabbit hole has to do with that BitCorn thing  I keep hearing about all over the place ?¿

I like to start from the begining, as I think so I am 😋😂


Rabbit Hole is a play written by David Lindsay-Abaire. It was the recipient of the 2007 Pulitzer Prize for Drama. The play premiered on Broadway in 2006, and it has also been produced by regional theatres in cities such as Los Angeles, Philadelphia and Pittsburgh. The play had its Spanish language premiere in San Juan, Puerto Rico in Autumn of 2010.

The play deals with the ways family members survive a major loss, and includes comedy as well as tragedy. Cynthia Nixon won the 2006 Tony Award for Best Performance by a Leading Actress in a Play for her performance as Becca in the New York production, and the play was nominated for several other Tony awards.


Rabbit Hole


A situation, journey, or process that is particularly strange, problematic, difficult, complex, or chaotic, especially one that becomes increasingly so as it develops or unfolds.

An allusion to “Alice’s Adventures in Wonderland” by Lewis Carroll, it is used especially in the phrase “(go) down the rabbit hole.”

Overhauling the current tax legislation is a rabbit hole I don’t think this administration should go down at this point.I’ve stayed away from drugs and alcohol since coming to college. I have an addictive personality, so I decided to just avoid that rabbit hole altogether.


What does rabbit hole mean?

Used especially in the phrase going down the rabbit hole or falling down the rabbit hole, a rabbit hole is a metaphor for something that transports someone into a wonderfully (or troublingly) surreal state or situation.

On the internet, a rabbit hole frequently refers to an extremely engrossing and time-consuming topic.


Where does rabbit hole come from?


Alice falling down a hole with a jar in hand
Alice’s Adventures in WonderLand

Literally, a rabbit hole is what the animal digs for its home. The earliest written record of the phrase dates back to the 17th century. But the figurative rabbit hole begins with Lewis Carroll’s 1865 classic, Alice’s Adventures in Wonderland.

In its opening chapter, “Down the Rabbit-Hole,” Alice follows the White Rabbit into his burrow, which transports her to the strange, surreal, and nonsensical world of Wonderland.

Since then, Carroll’s rabbit hole has proved a popular and useful reference. The Oxford English Dictionary finds the first allusive rabbit hole in a 1938 edition of The Yale Law Journal: “It is the Rabbit-Hole down which we fell into the Law, and to him who has gone down it, no queer performance is strange.”

Over much of the 20th century, rabbit hole has been used to characterize bizarre and irrational experiences. It’s especially used to reference magical, challenging, and even dangerous places or positions, similar to Carroll’s topsy-turvy Wonderland.

Rabbit hole has many metaphorical applications—from frustrating red tape to the mind-bending complexity of science to hallucinations during altered states—all united by a common sense of passing into some labyrinthine, logic-defying realm that, once entered, is hard to get out of.

One can fall down the rabbit hole of government bureaucracy, healthcare, obtaining a green card, tax law, the political economy of modern Japan, puberty, college admissions, or quantum mechanics.

If you’re Neo in the hit film The Matrix, you can take the red pill—a pill that shows you the truth, as opposed to the blue pill, which keeps you in ignorance—and “see how deep the rabbit hole goes.”

In a related note, some people literally take pills and go down the rabbit hole of a psychedelic drug trip.

But as Kathryn Schulz observed for The New Yorker in 2015, rabbit hole has further evolved in the information age: “These days…when we say that we fell down the rabbit hole, we seldom mean that we wound up somewhere psychedelically strange. We mean that we got interested in something to the point of distraction—usually by accident, and usually to a degree that the subject in question might not seem to merit.”

Thanks to the abundance, variety, and instant access of content online, many fall down internet rabbit holes which are often spectacularly, and addictively, niche: scary stories, obscure conspiracy theories, or famous last meals, for instance.

Other rabbit holes tend to be opened up by specific services or social media, which serve users item after item, link after link: Wikipedia, Netflix, Amazon, Facebook, YouTube, and so forth.

These rabbit holes have become so common that people sometimes swap out rabbit for the name of the particular site, e.g. “I’ve fallen down an Instragram hole or “I’m falling down a wikihole.”


Who uses rabbit hole?


From formal documents to internet status updates, rabbit hole is a very popular and widespread expression. Unlike earlier iterations of the metaphor, internet rabbit holes convey less a sense of weirdness, disorientation, or difficulty than they do of an intensely captivating diversion.

Rabbit hole is also showing increasing use as a modifier, e.g. a rabbit-hole question or phenomenon.


Now… that we have a basic and broader understanding about this Hole and it’s rabbit that digged it 😋😂

Let me show you a journey that I took to get to know, understand, admire, be amazed and support the BitCorn everybody is so crazy about …


Bitcoin Glossary


Block

Blocks are found in the Bitcoin blockchain. Blocks connect all transactions together. Transactions are combined into single blocks and are verified every ten minutes through mining. Each subsequent block strengthens the verification of the previous blocks, making it impossible to double spend bitcoin transactions (see double spend below).

BIP

Bitcoin Improvement Proposal or BIP, is a technical design document providing information to the bitcoin community, or describing a new feature for bitcoin or its processes or environment which affect the Bitcoin protocol. New features, suggestions, and design changes to the protocol should be submitted as a BIP. The BIP author is responsible for building consensus within the community and documenting dissenting opinions.

Blockchain

The Bitcoin blockchain is a public record of all Bitcoin transactions. You might also hear the term used as a “public ledger.” The blockchain shows every single record of bitcoin transactions in order, dating back to the very first one. The entire blockchain can be downloaded and openly reviewed by anyone, or you can use a block explorer to review the blockchain online.

Block Height

The block height is just the number of blocks connected together in the block chain. Height 0 for example refers to the very first block, called the “genesis block.”

Block Reward

When a block is successfully mined on the bitcoin network, there is a block reward that helps incentivize miners to secure the network. The block reward is part of a “coinbase” transaction which may also include transaction fees. The block rewards halves roughly every four years; see also “halving.”

Change

Let’s say you are spending $1.90 in your local supermarket, and you give the cashier $2.00. You will get back .10 cents in change. The same logic applies to bitcoin transactions. Bitcoin transactions are made up of inputs and outputs. When you send bitcoins, you can only send them in a whole “output.” The change is then sent back to the sender.

Cold Storage

The term cold storage is a general term for different ways of securing your bitcoins offline (disconnected from the internet). This would be the opposite of a hot wallet or hosted wallet, which is connected to the web for day-to-day transactions. The purpose of using cold storage is to minimize the chances of your bitcoins being stolen from a malicious hacker and is commonly used for larger sums of bitcoins.

Confirmation

A confirmation means that the bitcoin transaction has been verified by the network, through the process known as mining. Once a transaction is confirmed, it cannot be reversed or double spent. Transactions are included in blocks.

Cryptography

Cryptography is used in multiple places to provide security for the Bitcoin network. Cryptography, which is essentially mathematical and computer science algorithms used to encrypt and decrypt information, is used in bitcoin addresses, hash functions, and the blockchain.

Decentralized

Having a decentralized bitcoin network is a critical aspect. The network is “decentralized,” meaning that it’s void of a centralized company or entity that governs the network. Bitcoin is a peer-to-peer protocol, where all users within the network work and communicate directly with each other, instead of having their funds handled by a middleman, such as a bank or credit card company.

Difficulty

Difficulty is directly related to Bitcoin mining (see mining below), and how hard it is to verify blocks in the Bitcoin network. Bitcoin adjusts the mining difficulty of verifying blocks every 2016 blocks. Difficulty is automatically adjusted to keep block verification times at ten minutes.

Double Spend

If someone tries to send a bitcoin transaction to two different recipients at the same time, this is double spending. Once a bitcoin transaction is confirmed, it makes it nearly impossible to double spend it. The more confirmations that a transaction has, the harder it is to double spend the bitcoins.

Full Node

A full node is when you download the entire blockchain using a bitcoin client, and you relay, validate, and secure the data within the blockchain. The data is bitcoin transactions and blocks, which is validated across the entire network of users.

Halving

Bitcoins have a finite supply, which makes them scarce. The total amount that will ever be issued is 21 million. The number of bitcoins generated per block is decreased 50% every four years. This is called “halving.” The final halving will take place in the year 2140.

Hash Rate

The hash rate is how the Bitcoin mining network processing power is measured. In order for miners to confirm transactions and secure the blockchain, the hardware they use must perform intensive computational operations which is output in hashes per second.

Hash (txid)

A transaction hash (sometimes referred to as a transaction ID or txid) is a unique identifier that can be used on any block explorer to look up all of the public details of a particular transaction. Every on-chain transaction has a unique hash made up of a long string of alphanumeric characters.

Mining

Bitcoin mining is the process of using computer hardware to do mathematical calculations for the Bitcoin network in order to confirm transactions. Miners collect transaction fees for the transactions they confirm and are awarded bitcoins for each block they verify.

Pool

As part of bitcoin mining, mining “pools” are a network of miners that work together to mine a block, then split the block reward among the pool miners. Mining pools are a good way for miners to combine their resources to increase the probability of mining a block, and also contribute to the overall health and decentralization of the bitcoin network.

Private Key

A private key is a string of data that shows you have access to bitcoins in a specific wallet. Think of a private key like a password; private keys must never be revealed to anyone but you, as they allow you to spend the bitcoins from your bitcoin wallet through a cryptographic signature.

Proof of Work

Proof of work refers to the hash of a block header (blocks of bitcoin transactions). A block is considered valid only if its hash is lower than the current target. Each block refers to a previous block adding to previous proofs of work, which forms a chain of blocks, known as a blockchain. Once a chain is formed, it confirms all previous Bitcoin transactions and secures the network.

Public Address

A public bitcoin address is cryptographic hash of a public key. A public address typically starts with the number “1.” Think of a public address like an email address. It can be published anywhere and bitcoins can be sent to it, just like an email can be sent to an email address.

RBF

RBF stands for Replace By Fee, and refers to a method that allows a sender to replace a “stuck” or unconfirmed transaction with a new one that uses a higher fee. This is done to make sure a transaction confirms as quickly as possible. The “replacement” transaction uses the same inputs as the original one. This is not considered a double spend, as the receiving address(es) typically remain the same.

Satoshi Nakamoto

Bitcoin’s existence began with an academic paper written in 2008 by a developer under the name of Satoshi Nakamoto. Satoshi is the name used as the original inventor of Bitcoin.

Transaction

A transaction is when data is sent to and from one bitcoin address to another. Just like financial transactions where you send money from one person to another, in bitcoin you do the same thing by sending data (bitcoins) to each other. Bitcoins have value because it’s based on the properties of mathematics, rather than relying on physical properties (like gold and silver) or trust in central authorities, like fiat currencies. 

Wallet

Just like with paper dollars you hold in your physical wallet, a bitcoin wallet is a digital wallet where you can store, send, and receive bitcoins securely. There are many varieties of wallets available, whether you’re looking for a web or mobile solution. Ideally, a bitcoin wallet will give you access to your public and private keys. This means that only you have rightful access to spend these bitcoins, whenever you choose to.


Sources:

https://dictionary.com/

https://wikipedia.com/

https://blockchain.com/

Digital Art by Free Spirit

Made with 💚 by Free Spirit

✌ & 💚



With 💚

Veritas … In pictures…



Gold is Money…

Uni-Verse

Success



Genes that erase memories

Researches can erase painful memories from the brain


Pokemon Go users give away all privacy rights




Compounding Interest






Play the role of a fool…

Occult – Anatomy

20 Fastest Growing + Declining Jobs

Causes and Effects of Inflation

The History of Logistics

SSG 16.9 – Legal Identity for all

Scientists call for Protection from Non-Ionizing Electromagnetic Field Exposure

Protest’s are Illegal and punished with Jail Time in a “Free” Society !!!?¿!!!

Human Value Chain

Opposition to the use of Blockchain Identity – Part 1

Opposition to the use of Blockchain Identity – Part 2

Human Capital Performance Bond

Strategies for Investing in Undervalued Human Capital

U.S Army TRADOC G-2

Digitizing Government-to-Person (G2P) Payments

Will be Always Updated !!!


Made with 💚 by Free Spirit

✌ & 💚


Free Spirit’s Wondering…

Some moments of my online wondering…

R&D, wisdom, knowledge, curiosities, answers and many more questions 🙂🤣🙃




You have a Choice !!!

Power to the People !!!
Wake the F… Up !!!
No more excuses, you have a choice now !!!

WHO as in WORLD HEALTH ORGANISATION

P F I Z E R  Insider

Poem of the Legacy

Being Curious…

Of course it doesn’t comply…

The Problem with centralized Social-Media

10 Principles of Strategic Leadership

Global Reserve Currency

Psychology of a Market Cycle


Success

Triangle of Success



Be like a Tree…

If anyone understands this please enlighten me too 😊🤭🤗

http://www.revelationtimelinedecoded.com

ESG

For those that think WE are the Center of the Universe 🤣😅😂

Confident vs. Insecure People

Day by day…

Managing Complex Change

The Cone of Learning

The Hero’s Journey

Electromagnetic Field of the Heart

I-Ching

Language creates Reality

Sex Organs of the Machine World


Philosopher’s Stone

Isaac Newton

Abracadabra

Singularity

Multi-Mind Thought Control Process
APPLE INC.

Retrocausality

CERN


EGO

SYSCOIN ECOSYSTEM


JagStein

SysCoin

Bitcoin might bury FIAT 🙂 🤭 🙃

DEFI Ecosystem on Ethereum

DeFi Stack


Bitcoin Mining Ecosystem Map

…the other 6 Billion

bitcoin

This is about the other 6 Billion…

Top NFT Projects



Defender of the Flower

Flower of Life

Sacred Geometry

Seed & Flower of Life

Knowledge – An Antidote to Fear

JOIN THE REVOLUTION 😋 🤣 😋

Emotion – Judgement – Action

…violent recolution inevitable.

E S B I

Every generation…

LOVE YOUR RAGE
NOT YOUR CAGE

Revolution

The Times – January 3, 2009

REVOLUTION

Bitcoin Genesis Block – 03 January 2009

Introduction to Bitcoin

Introduction to Decentralized Finance

Introduction to Digital Currencies










All Metals We Mined

Map to Multiplication
Nikola Tesla

Top VC’s Investing in BlockChain Companies

Athmospheres of the Solar System

Global GDP 2021

Map of CyberSecurity Domains

21 Questions

Six Innovation Models

What May Happen in the next 100 Years

Abstract – “…to pull the body out
of dimension so that the person
can walk through solid objects
such as wooden doors.”
Okay 🤯 😳 🤯 ?¿?

China’s Social Credit System

Blockchain Platforms Comparison (BCP)


ARISE



With 💚

F I A T

Fiat money (from Latinfiat“let it be done”) is a type of money that is not backed by any commodity such as gold or silver, and typically declared by a decree from the government to be legal tender.

Throughout history, fiat money was sometimes issued by local banks and other institutions.

In modern times, fiat money is generally established by government regulation.


Yuan dynasty banknotes are a medieval form of fiat money.

Fiat money does not have intrinsic value and does not have use value.

It has value only because the people who use it as a medium of exchange agree on its value.

They trust that it will be accepted by merchants and other people.

Fiat money is an alternative to commodity money, which is a currency that has intrinsic value because it contains a precious metal such as gold or silver which is embedded in the coin.

Fiat also differs from representative money, which is money that has intrinsic value because it is backed by and can be converted into a precious metal or another commodity.

Fiat money can look similar to representative money (such as paper bills), but the former has no backing, while the latter represents a claim on a commodity (which can be redeemed to a greater or lesser extent).

Government-issued fiat money banknotes  were used first during the 11th century in China.

Fiat money started to predominate during the 20th century. Since President Richard Nixon‘s decision to default on the US dollar convertibility to gold in 1971, a system of national fiat currencies has been used globally.


Fiat money can be:

  • Any money that is not backed by a commodity.
  • Money declared by a person, institution or government to be legal tender,  meaning that it must be accepted in payment of a debt in specific circumstances.
  • State-issued money which is neither convertible through a central bank to anything else nor fixed in value in terms of any objective standard.
  • Money used because of government decree.
  • An otherwise non-valuable object that serves as a medium of exchange (also known as fiduciary money.)

The term fiat derives from the Latin word fiat, meaning “let it be done”[10] used in the sense of an order, decree[2] or resolution.[11]


The word “FꟾAT”, with a long I and an A–T ligature.


“Gold Is Money” – J.P Morgan, 1912

Issue and Control a Nation’s Money… M.A. Rothschild


Andreeas Antonopoulos

Choose Wisely

Power to the People

Made with 💚 by Free Spirit

✌ & 💚



With 💚

“THE FIAT STANDARD”




I am happy to share with you this chapter from my forthcoming book, The Fiat Standard, which will be out in November in hardcover, audio, and ebook formats.

Chapter 1: Introduction

On August 6, 1915, His Majesty’s Government issued this appeal:

“In view of the importance of strengthening the gold reserves of the country for exchange purposes, the Treasury has instructed the Post Office and all public departments charged with the duty of making cash payments to use notes instead of gold coins whenever possible.

The public generally are earnestly requested, in the national interest, to cooperate with the Treasury in this policy by

(1) paying in gold to the Post Office and to the Banks;

(2) asking for payment of cheques in notes rather than in gold;

(3) using notes rather than gold for payment of wages and cash disbursements generally”.

August 6th, 1915 – His Majesty’s Government

With this obscure and largely forgotten announcement, the Bank of England effectively began the global monetary system’s move away from a gold standard, in which all government and bank obligations were redeemable in physical gold.

At the time, gold coins and bars were still widely used worldwide, but they were of limited use for international trade, which necessitated resorting to the clearance mechanisms of international banks. 

Chief among all banks at the time, the Bank of England’s network spanned the globe, and its pound sterling had, for centuries, acquired the reputation of being as good as gold. 

Instead of the predictable and reliable stability naturally provided by gold, the new global monetary standard was built around government rules, hence its name. The Latin word fiat means ‘let it be done’ and, in English, has been adopted to mean a formal decree, authorization, or rule.

It is an apt term for the current monetary standard, as what distinguishes it most is that it substitutes government dictates for the judgment of the market.

Value on fiat’s base layer is not based on a freely traded physical commodity, but is instead dictated by authority, which can control its issuance, supply, clearance, and settlement, and even confiscate it at any time it sees fit.

With the move to fiat, peaceful exchange on the market no longer determined the value and choice of money. Instead, it was the victors of world wars and the gyrations of international geopolitics that would dictate the choice and value of the medium that constitutes one half of every market transaction.

While the 1915 Bank of England announcement, and others like it at the time, were assumed to be temporary emergency measures necessary to fight the Great War, today, more than a century later, the Bank of England is yet to resume the promised redemption of its notes in gold.

Temporary arrangements restricting note convertibility into gold have turned into the permanent financial infrastructure of the fiat system that took off over the next century.

Never again would the world’s predominant monetary systems be based on currencies fully redeemable in gold.

The above decree might be considered the equivalent of Satoshi Nakamoto’s email to the cryptography mailing list announcing Bitcoin, but unlike Nakamoto, His Majesty’s Government provided no software, white paper, nor any kind of technical specification as to how such a monetary system could be made practical and workable. Unlike the cold precision of Satoshi’s impersonal and dispassionate tone, His Majesty’s Government relied on appeal to authority, and emotional manipulation of its subjects’ sense of patriotism.

Whereas Satoshi was able to launch the Bitcoin network in operational form a few months after its initial announcement, it took two world wars, dozens of monetary conferences, multiple financial crises, and three generations of governments, bankers, and economists struggling to ultimately bring about a fully operable implementation of the fiat standard in 1971.

Fifty years after taking its final form, and one century after its genesis, an assessment of the fiat system is now both possible and necessary. Its longevity makes it unreasonable to keep dismissing the fiat system as an irredeemable fraud on the brink of collapse, as many of its detractors have done for decades. Many people at the end of their life today have never used anything but fiat money, and neither did their long-deceased parents. This cannot be written off as an unexplained fluke, and economists should be able to explain how this system functions and survives, despite its many obvious flaws.

There are, after all, plenty of markets around the world that are massively distorted by government interventions, but they nonetheless continue to survive. It is no endorsement of these interventions to attempt to explain how they persist.

It is also not appropriate to judge fiat systems based on the marketing material of their promoters and beneficiaries in government-financed academia and the popular press.

While the global fiat system so far avoided the complete collapse its detractors would predict, that cannot vindicate its promoters’ advertising of it as a free-lunch-maker with no opportunity cost or consequence. More than fifty episodes of hyperinflation have taken place around the world using fiat monetary systems in the past century. Moreover, the global fiat system avoiding catastrophic collapse is hardly enough to make the case for it as a positive technological, economic, and social development. 

Between the relentless propaganda of its enthusiasts and the rabid venom of its detractors, this book attempts to offer something new: an exploration of the fiat monetary system as a technology, from an engineering and functional perspective, outlining its purposes and common failure modes, and deriving the wider economic, political, and social implications of its use. I believe that adopting this approach to writing

The Bitcoin Standard contributed to making it the best-selling book on bitcoin to date, helping hundreds of thousands of readers across more than 20 languages understand the significance and implications of bitcoin. Rather than focus on the details of how bitcoin operates, I chose to focus on why it operates the way it does, and what the implications are. 

If you have read the Bitcoin Standard and enjoyed my exploration of bitcoin, I hope you will enjoy this exploration of the operation of fiat.

Perhaps counter-intuitively, I believe that by first understanding the operation of bitcoin, you can then better understand the equivalent operations in fiat.

It is easier to explain an abacus to a computer user than it is to explain a computer to an abacus user.

A more advanced technology performs its functions more productively and efficiently, allowing a clear exposition of the mechanisms of the simpler technology, and exposing its weaknesses.

For the reader who has become familiar with the operation of bitcoin, a good way to understand the operation of fiat is by drawing analogy to the operation of bitcoin using concepts like mining, nodes, balances, and proof of work.

My aim is to explain the operation and engineering structure of the fiat monetary system and how it operates, in reality, away from the naive romanticism of governments and banks who have benefited from this system for a century.

The first seven chapters of The Bitcoin Standard explained the history and function of money, and its importance to the economic order. With that foundation laid, the final three chapters introduced bitcoin, explained its operation, and elaborated on how its operation relates to the economic questions discussed in the earlier chapters.

My motivation as an author was to allow readers to understand how bitcoin operates and its monetary significance without requiring them to have a previous background in economics or digital currencies.

Had Bitcoin not been invented, the first seven chapters of The Bitcoin Standard could have served as an introduction to explaining the operation of the fiat monetary system.

This book picks up where Chapter 7 of “The Bitcoin Standard” left off. The first chapters of this book are modeled on the last three chapters of the Bitcoin Standard, except applied to fiat money. 

How does the fiat system actually function, in an operational sense? The success of bitcoin in operating as a bare-bones and standalone free market monetary system helps elucidate the properties and functions necessary to make a monetary system function.

Bitcoin was designed by a software engineer who boiled a monetary system down to its essentials. These choices were then validated by a free market of millions of people around the world who continue to use this system, and currently entrust it to hold more than $300 billion of their wealth.

The fiat monetary system, by contrast, has never been put on a free market for its users to pass the only judgment that matters on it. The all-too-frequent systemic collapses of the fiat monetary system are arguably the true market judgment emerging after suppression by governments.

With bitcoin showing us how an advanced monetary system can function entirely independently of government control, we can see clearly the properties required for a monetary system to operate on the free market, and in the process, better understand fiat’s modes of operation, and all-too-frequent modes of failure.

While fiat systems have not won acceptance on the free market, and though their failings and limitations are many, there is no denying the fact that many fiat systems have worked for large parts of the last century, and facilitated an unfathomably large number of transactions and trades all around the world. Its continued operation makes understanding it useful, particularly as we still live in a world that runs on fiat. Just because you may be done with fiat does not mean that fiat is done with you!

Understanding how the fiat standard works, and how it frequently fails, is essential knowledge for being able to navigate it.


This is a preview chapter from my forthcoming book, The Fiat Standard, which will be out in November in hardcover, audio, and ebook formats.

To begin, it’s important to understand that the fiat system was not a carefully, consciously, or deliberately designed financial operating system like bitcoin; rather, it evolved through a complex process of compromise between political constraints and expedience.

The next chapter illustrates this by examining newly-released historical documents on just how the fiat standard was born, and how it replaced the gold standard, beginning in England in the early twentieth century, completing the transition in 1971 across the Atlantic.

This is not a history book, however, and it will not attempt a full historical account of the development of the fiat standard over the past century, in the same way the Bitcoin Standard did not delve too deeply into the study of the historical development of the bitcoin software protocol. The focus of the first part of the book will be on the operation and function of the fiat monetary system, by making analogy to the operation of the bitcoin network, in what might be called a comparative study of the economics of different monetary engineering systems. 

Chapter 3 examines the underlying technology behind the fiat standard. Contrary to what the name suggests, modern fiat money is not conjured out of thin air through government fiat.

Government does not just print currency and hand it out to a society that accepts it as money. Modern fiat money is far more sophisticated and convoluted in its operation. The fundamental engineering feature of the fiat system is that it treats future promises of money as if they were as good as present money because the government guarantees these promises.

While such an arrangement would not survive in the free market, the coercion of the government can maintain it for a very long time. Government can meet any present financial obligations by diverting them onto future taxpayers or onto current fiat holders through taxes or inflation; and, further, through legal tender laws, the government can prevent any alternatives to its money from gaining traction.

By leveraging their monopoly on the legal use of violence to meet present financial obligations from potential future income, government fiat makes debt into money, forces its acceptance across society, and prevents it from collapsing.

Chapter 4 examines how the fiat network’s native tokens come into existence, using fiat’s antiquated and haphazard version of mining.

As fiat money is credit, credit creation in a fiat currency results in the creation of new money, which means that lending is the fiat version of mining.

Fiat miners are the financial institutions capable of generating fiat-based debt with guarantees from the government and/or central banks.

Unlike with bitcoin’s difficulty adjustment, fiat has no mechanisms for controlling issuance. Credit money, instead, causes constant cycles of expansion and contraction in the money supply with eventual devastating consequences, as this chapter examines.

Chapter 5 explains the topography of the fiat network, which is centered around its only full node, the US Federal Reserve.

The Fed is the only institution that can validate or refuse any transaction on any layer of the network.

Another 200 or so central bank nodes are spread around the world, and these have geographic monopolies on financial and monetary services, where they regulate and manage tens of thousands of commercial bank nodes worldwide.

Unlike with bitcoin, the incentive for running a fiat node is enormous.

Chapter 6 then analyzes balances on the fiat network, and how fiat has the unique feature where many, if not most, users, have negative account balances.

The enormous incentive to mine fiat by issuing debt means individuals, corporations, and governments all face a strong incentive to get into debt.

The monetization and universalization of debt is also a war on savings, and one which governments have persecuted stealthily and mostly quite successfully against their citizens over the last century.

Based on this analysis, Chapter 7 concludes the first section of the book by discussing the uses of fiat, and the problems it solves.

The two obvious uses of fiat are that it allows for the government to easily finance itself, and that it allows banks to engage in maturity-mismatching and fractional reserve banking while largely protected from the inevitable downside.

But the third use of fiat is the one that has been the most important to its survival: salability across space.

From the outset, I will make a confession to the reader. Attempting to think of the fiat monetary system in engineering terms and trying to understand the problem it solves have resulted in giving me an appreciation of its usefulness, and a less harsh assessment of the motives and circumstances which led to its emergence.

Understanding the problem this fiat system solves makes the move from the gold standard to the fiat standard appear less outlandish and insane than it had appeared to me while writing The Bitcoin Standard, as a hard money believer who could see nothing good or reasonable about the move to an easier money. 

Seeing that the analytical framework of “The Bitcoin Standard” was built around the concept of salability across time, and the ability of money to hold its value into the future, and the implications of that to society, the fiat standard initially appears as a deliberate nefarious conspiracy to destroy human civilization.

But writing this book, and thinking very hard about the operational reality of fiat, has brought into sharper focus the property of salability across space, and in the process, made the rationale for the emergence of the fiat standard clearer, and more comprehensible.

For all its many failings, there is no escaping the conclusion that the fiat standard was indeed a solution to a real and debilitating problem with the gold standard, namely its low spatial salability.

More than any conspiracy, the limited spatial salability of gold as global trade advanced allowed the survival of the fiat standard for so long, making its low temporal salability a tolerable problem, and allowing governments worldwide tremendous leeway to bribe their current citizens at the expense of their future citizens by creating the easy fiat tokens that operate their payment networks.

As we take stock of a whole century of operation for this monetary system, a sober and nuanced assessment can appreciate the significance of this solution for facilitating global trade, while also understanding how it has allowed the inflation that benefited governments at the expense of their future citizens.

Fiat may have been a huge step backward in terms of its salability across time, but it was a substantial leap forward in terms of salability across space.

Having laid out the mechanics for the operation of fiat in the first section, the book’s second section, Fiat Life, examines the economic, societal, and political implications of a society utilizing such a form of money with uncertain and usually poor inter-temporal salability.

This section focuses on analyzing the implications of two economic causal mechanisms of fiat money: the utilization of debt as money; and the ability of the government to grant this debt at essentially no cost.

Fiat increasingly divorces economic reward from economic productivity, and instead bases it on political allegiance. This attempted suspension of the concept of opportunity cost makes fiat a revolt against the natural order of the world, in which humans, and all other animals, have to struggle against scarcity every day of their lives.

Nature provides humans with reward only when their toil is successful, and similarly, markets only reward humans when they are able to produce something that others value subjectively.

After a century of economic value being assigned at the point of a gun, these indisputable realities of life are unknown to, or denied by, huge swathes of the world’s population who look to their government for their salvation and sustenance.

The suspension of the normal workings of scarcity through government dictat has enormous implications on individual time preference and decision-making, with important consequences to many facets of life.

In the second section of the book, we explore the impacts of fiat on family, food, education, science, health, fuels, and security. 

While the title of the book refers to fiat, this really is a book about bitcoin, and the first two sections build up the analytical foundation for the main course that is the third part of the book, examining the all-too-important question with which “The Bitcoin Standard” leaves the reader: what will the relationship between fiat and bitcoin be in the coming years?

Chapter 16 examines the specific properties of bitcoin that make it a potential solution to the problems of fiat.

While “The Bitcoin Standard” focused on bitcoin’s intertemporal salability, The Fiat Standard examines how bitcoin’s salability across space is the mechanism that makes it a more serious threat to fiat than gold and other physical monies with low spatial salability.

Bitcoin’s high salability across space allows us to monetize a hard asset itself, and not credit claims on it, as was the case with the gold standard.

At its most basic, bitcoin increases humanity’s capacity for long-distance international settlement by around 500,000 transactions a day, and completes that settlement in a few hours.

This is an enormous upgrade over gold’s capacity, and makes international settlement a far more open market, much harder to monopolize.

This also helps us understand bitcoin’s value proposition as not just in being harder than gold, but also in traveling much faster.

Bitcoin effectively combines gold’s salability across time with fiat’s salability across space in one apolitical immutable open source package.

By being a hard asset, bitcoin is also debt-free, and its creation does not incentivize the creation of debt. By offering finality of settlement every ten minutes, bitcoin also makes the use of credit money very difficult. At each block interval, the ownership of all bitcoins is confirmed by tens of thousands of nodes all over the world. There can be no authority whose fiat can make good a broken promise to deliver a bitcoin by a certain block time.

Financial institutions that engage in fractional reserve banking in a bitcoin economy will always be under the threat of a bank run as long as no institution exists that can conjure present bitcoin at significantly lower than the market rate, as governments are able to do with their fiat. 

Chapter 17 discusses bitcoin scaling in detail, and argues it will likely happen through second layer solutions which will be optimized for speed, high volume, and low cost, but involve trade-offs in security and liquidity.

Chapter 18 builds on this analysis to discuss what banking would look like under a Bitcoin Standard, while chapter 19 discusses how savings would work under such a system.

Chapter 20 studies bitcoin’s energy consumption, how it is related to bitcoin’s security, and how it can positively impact the market for energy worldwide.

With this foundation, the book can tackle the question: how can bitcoin rise in the world of fiat, and what are the implications for these two monetary standards coexisting?

Chapter 21 analyzes different scenarios in which bitcoin continues to grow and thrive, while Chapter 22 examines scenarios where bitcoin fails.

I hope you enjoyed this preview chapter from my forthcoming book, The Fiat Standard, which will be out in November in hardcover, audio, and ebook formats.



All the Credit goes to Saifedean Ammous


Shared with 💚 by Free Spirit

✌ & 💚

BitHouse with 💚