Block 170 – First ever bitcoin transaction


2009-01-12 04:30
#1 bitcoin transaction

The first ever bitcoin transaction from one person to another, on 2009-01-12 at 04:30 used Pay-to-Public-Key (P2PK), when Satoshi Nakamoto sent coins to Hal Finney in Block 170.

P2PK is no longer used because it is a more expensive, less private, and less secure way of receiving bitcoin than other methods.

Pay-to-Public-Key (P2PK)
Quick facts
• Transaction:
f4184fc596403b9d638783cf57adfe4c75c605f6356fbc91338530e9831e9e16

Timestamp: ‎

2009-01-12 04:30 (14 years ago)

Fee: 0 sat / $0.00

Fee rate: 0.00 sat/vB

• Details

Size : 275 B

Virtual size: ‎275 vB

Weight: ‎1.1 kWU

Version : 1

Locktime : 0

Transaction hex:

0100000001c997a5e56e104102fa209c6a852dd90660a20b2d9c352423edce25857fcd3704000000004847304402204e45e16932b8af514961a1d3a1a25fdf3f4f7732e9d624c6c61548ab5fb8cd410220181522ec8eca07de4860a4acdd12909d831cc56cbbac4622082221a8768d1d0901ffffffff0200ca9a3b00000000434104ae1a62fe09c5f51b13905f07f06b99a2f7159b2225f374cd378d71302fa28414e7aab37397f554a7df5f142c21c1b7303b8a0626f1baded5c72a704f7e6cd84cac00286bee0000000043410411db93e1dcdb8a016b49840f8c53bc1eb68a382e97b1482ecad7b148a6909a5cb2e0eaddfb84ccf9744464f82e160bfa9b8b64f9d4c03f999b8643f656b412a3ac00000000

• Inputs & Outputs

P2PK: ‎50.00000000 BTC

ScriptSig (ASM):

OP_PUSHBYTES_71 304402204e45e16932b8af514961a1d3a1a25fdf3f4f7732e9d624c6c61548ab5fb8cd410220181522ec8eca07de4860a4acdd12909d831cc56cbbac4622082221a8768d1d0901

ScriptSig (HEX):
47304402204e45e16932b8af514961a1d3a1a25fdf3f4f7732e9d624c6c61548ab5fb8cd410220181522ec8eca07de4860a4acdd12909d831cc56cbbac4622082221a8768d1d0901

nSequence: 0xffffffff

Previous output script:

OP_PUSHBYTES_65 0411db93e1dcdb8a016b49840f8c53bc1eb68a382e97b1482ecad7b148a6909a5cb2e0eaddfb84ccf9744464f82e160bfa9b8b64f9d4c03f999b8643f656b412a3
OP_CHECKSIG

Previous output type: P2PK

P2PK: ‎10.00000000 BTC

ScriptPubKey(ASM):

OP_PUSHBYTES_65 04ae1a62fe09c5f51b13905f07f06b99a2f7159b2225f374cd378d71302fa28414e7aab37397f554a7df5f142c21c1b7303b8a0626f1baded5c72a704f7e6cd84c
OP_CHECKSIG

ScriptPubKey (HEX):

4104ae1a62fe09c5f51b13905f07f06b99a2f7159b2225f374cd378d71302fa28414e7aab37397f554a7df5f142c21c1b7303b8a0626f1baded5c72a704f7e6cd84cac

Type: P2PK

P2PK: ‎40.00000000 BTC

ScriptPubKey (ASM):

OP_PUSHBYTES_65 0411db93e1dcdb8a016b49840f8c53bc1eb68a382e97b1482ecad7b148a6909a5cb2e0eaddfb84ccf9744464f82e160bfa9b8b64f9d4c03f999b8643f656b412a3
OP_CHECKSIG

ScriptPubKey (HEX):
410411db93e1dcdb8a016b49840f8c53bc1eb68a382e97b1482ecad7b148a6909a5cb2e0eaddfb84ccf9744464f82e160bfa9b8b64f9d4c03f999b8643f656b412a3ac

Type : P2PK

50.00000000 BTC

• Details

Size: ‎275 B

Virtual size: ‎275 vB

Weight : 1.1 kWU

Version: ‎1

Locktime: 0

Transaction hex:

0100000001c997a5e56e104102fa209c6a852dd90660a20b2d9c352423edce25857fcd3704000000004847304402204e45e16932b8af514961a1d3a1a25fdf3f4f7732e9d624c6c61548ab5fb8cd410220181522ec8eca07de4860a4acdd12909d831cc56cbbac4622082221a8768d1d0901ffffffff0200ca9a3b00000000434104ae1a62fe09c5f51b13905f07f06b99a2f7159b2225f374cd378d71302fa28414e7aab37397f554a7df5f142c21c1b7303b8a0626f1baded5c72a704f7e6cd84cac00286bee0000000043410411db93e1dcdb8a016b49840f8c53bc1eb68a382e97b1482ecad7b148a6909a5cb2e0eaddfb84ccf9744464f82e160bfa9b8b64f9d4c03f999b8643f656b412a3ac00000000

Source: https://mempool.space/





Smart Contracts by Nick Szabo-1994


Nick Szabo

A smart contract is a computerized transaction protocol that executes the terms of a contract. The general objectives of smart contract design are to satisfy common contractual conditions (such as payment terms, liens, confidentiality, and even enforcement), minimize exceptions both malicious and accidental, and minimize the need for trusted intermediaries. Related economic goals include lowering fraud loss, arbitration and enforcement costs, and other transaction costs[1].

Some technologies that exist today can be considered as crude smart contracts, for example POS terminals and cards, EDI, and agoric allocation of public network bandwidth.

Digital cash protocols[2,3] are fine examples of smart contracts. They enable online payment while honoring the characteristics desired of paper cash: unforgeability, confidentiality, and divisibility.

When we take a second glance at digital cash protocols, considering them in the wider context of smart contract design, we see that these protocols can be used to implement a wide variety of electronic bearer securities, not just cash.

We also see that to implement a full customer-vendor transaction, we need more than just the digital cash protocol; we need a protocol that guarantees that product will be delivered if payment is made, and vice versa.

Current commercial systems use a wide variety of techniques to accomplish this, such as certified mail, face to face exchange, reliance on credit history and collection agencies to extend credit, etc.

Smart contracts have the potential to greatly reduce the fraud and enforcement costs of many commercial transactions. Digital cash protocols use several of the rich new building blocks coming out of the fields of cryptography and computer science.

Most of these components have not yet been widely exploited to facilitate contractual arrangements, but the potential is vast. These subprotocols include Byzantine agreement, symmetric and asymmetric encryption, digital signatures, blind signatures, cut & choose, bit commitment, multiparty secure computations, secret sharing, oblivious transfer, and multiparty secure computation. All of these except the first are described in [2,3].

The consequences of smart contract design on contract law and economics, and on strategic contract drafting, (and vice versa), have been little explored. As well, I suspect the possibilities for greatly reducing the transaction costs of executing some kinds of contracts, and the opportunities for creating new kinds of businesses and social institutions based on smart contracts, are vast but little explored.

The “cypherpunks”[4] have explored the political impact of some of the new protocol building blocks. The field of Electronic Data Interchange (EDI), in which elements of traditional business transactions (invoices, receipts, etc.) are exchanged electronically, sometimes including encryption and digital signature capabilities, can be viewed as a primitive forerunner to smart contracts. Indeed those business forms can provide good starting points and channel markers for smart contract designers.

One important task of smart contracts, that has been largely overlooked by traditional EDI, is communicating the semantics of the transaction to the parties involved.

There is ample opportunity in smart contracts for “smart fine print”: actions taken by the software hidden from a party to the transaction.

For example, grocery store POS machines don’t tell customers whether or not their names are being linked to their purchases in a database. The clerks don’t even know, and they’ve processed thousands of such transactions under their noses.

Thus, via hidden action of the software, the customer is giving away information they might consider valuable or confidential, but the contract has been drafted, and transaction has been designed, in such a way as to hide those important parts of that transaction from the customer.

To communicate transaction semantics well, we need good visual metaphors for the elements of the contract. These would hide the details of the protocol without surrendering control over the knowledge and execution of contract terms.

A primitive but good example is provided by the SecureMosiac software from CommerceNet. Encryption is shown by putting the document in an envelope, and a digital signature by affixing a seal onto the document or envelope. On the other hand, Mosaic servers log connections, and sometimes even transactions, without warning users — classic hidden actions.

Another area that might be considered in smart contract terms is synthetic assets[5]. These new securities are formed by combining securities (such as bonds) and derivatives (options and futures) in a wide variety of ways.

Very complex term structures for payments (ie, what payments get made when, the rate of interest, etc.) can now be built into standardized contracts and traded with low transaction costs, due to computerized analysis of these complex term structures.

Synthetic assets allow us to arbitrage the different term structures desired by different customers, and they allow us to construct contracts that mimic other contracts, minus certain liabilities.

As an example of the latter, synthetic assets have been constructed that mimic the returns of stocks in German companies, without requiring payment of the tax foreigners must pay to the German government for capital gains in German stocks.

It’s important to note that these synthetics do _not_ confer voting rights as do the originals. It might be possible to add smart contract protocols to transfer voting rights to the synthetic.

Of course, these protocols might have to be quite secure to withstand attacks from the third party jurisdiction, whose transaction cost (the tax) is being arbitraged away by the synthetic asset.

Finally, we can extend the concept of smart contracts to property. Smart property might be created by embedding smart contracts in physical objects. These embedded protocols would automatically give control of the keys for operating the property to the agent who rightfully owns that property, based on the terms of the contract.

For example, a car might be rendered inoperable unless the proper challenge-response protocol is completed with its rightful owner, preventing theft. If a loan was taken out to buy that car, and the owner failed to make payments, the smart contract could automatically invoke a lien, which returns control of the car keys to the bank. This smart lien might be much cheaper and more effective than a repo man.

Also needed is a protocol to provably remove the lien when the loan has been paid off, as well as hardship and operational exceptions. For example, it would be rude to revoke operation of the car while it’s doing 75 down the freeway.

Smart property may be a ways off, but digital cash and synthetic assets are here today, and more smart contract mechanisms are being designed. So far the design criteria important for automating contract execution have come from disparate fields like economics and cryptography, with little cross-communication: little awareness of the technology on the one hand, and little awareness of its best business uses other.

The idea of smart contracts is to recognize that these efforts are striving after common objectives, which converge on the concept of smart contracts.

Copyright (c) 1994 by Nick Szabo
permission to redistribute without alteration hereby granted

Redistributed with respect & admiration from:

https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html

Nick Szabo is so deeply ingrained in the modern digital currency landscape that 1/1000000000000th of an Ether is called a “szabo”.





Running bitcoin – Hal Finney


Wonder In Peace Bright Mind

Join Honorary Chair Fran Finney and the Running Bitcoin Challenge Committee as we honor legendary cypher punk, Hal Finney.

This is THE EVENT that combines Hal Finney’s love of running and Bitcoin and is raising funds and awareness to help defeat ALS, which ultimately claimed his life in 2014.

You are challenged to run (or walk, roll, or hike) the equivalent of a half marathon — cumulatively or all at once — by the end of January 10, 2023.

From wherever you are, spread the word about Bitcoin, participate in a healthy activity, feel good about doing your part to defeat ALS, and start the year off right


Hal Finney, one of the earliest bitcoin contributors, died eight years ago from complications of nervous system disease amyotrophic lateral sclerosis (ALS).

His spouse, Fran Finney, is now organizing a half marathon to raise funds for ALS research via bitcoin.



The “Running Bitcoin Challenge” is set to take place between Jan. 1 and Jan. 10. The timing of the occasion leads up to the anniversary of Hal Finney’s “Running bitcoin” tweet, in which Finney famously disclosed he was deploying a Bitcoin node.

There is no set location — participants can choose to join anywhere they wish. Players are encouraged to either run, walk, roll or hike the equivalent of a half marathon (Hal’s favorite distance) either in one go or over the entire 10-day period.

Donors contributing at least $100 will receive an official shirt with the half marathon’s logo, while the event’s top 25 fundraisers will get a Hal Finney collectible signed by his wife.

As of Wednesday morning, the event has already managed to secure nearly $10,000 in bitcoin donations.

An advocate of cryptography and digital privacy, Finney was the recipient of the first-ever bitcoin transfer from the network’s pseudonymous creator Satoshi Nakamoto.

The bitcoin community often suspected Finney was Nakamoto, a claim he consistently denied. He reportedly found out about his condition in 2009 and decided to move away from the project.

Hal’s name is high in the Bitcoin pantheon as one of the first people to voice support for Satoshi Nakamoto’s invention and for being the first person to receive a Bitcoin transaction from Satoshi.

He was, for a time, considered one of the top contenders on the list of potential Satoshis himself (many in blockchain who reject Dr. Craig Wright’s statements still falsely believe Finney to be Bitcoin’s real creator).

Hal, who referred to himself as a “cypherpunk,” was a cryptographic activist who went from developing video games to working on the Pretty Good Privacy (PGP) project in the 1990s. He described his PGP work as “dedicated to the goal of making Big Brother obsolete.”

PGP creator Phil Zimmerman hired Hal as his first employee when PGP became PGP Corporation in the early 2000s. He described Hal as a “gregarious man” who loved skiing and long-distance running.

Despite gradual paralysis that eventually forced him to stop working, Hal continued to code software and follow the Bitcoin project.

Almost as famous as his 2009 tweet is his “Bitcoin and me” post on BitcoinTalk.org in March 2013, the last he’d ever make.

It’s a long post, and Hal was “essentially paralyzed” at the time, using an eye tracker to type. Forum stats show the post has been read over 278,000 times.

“When Satoshi announced the first release of the software, I grabbed it right away,” he wrote. “I think I was the first person besides Satoshi to run bitcoin. I mined block 70-something, and I was the recipient of the first bitcoin transaction when Satoshi sent ten coins to me as a test.

I carried on an email conversation with Satoshi over the next few days, mostly me reporting bugs and him fixing them.”

Hal himself always denied being Satoshi Nakamoto, adding later that he’d sold most of the Bitcoins he mined (at pre-2014 prices) to pay for his treatments. He also mentioned putting some in a safe deposit box for his children.

“And, of course, the price gyrations of bitcoins are entertaining to me.

I have skin in the game.

But I came by my bitcoins through luck, with little credit to me.

I lived through the crash of 2011.

So I’ve seen it before.

Easy come, easy go.”

Hal Finney

www.runningbitcoin.us

Admiration and great Respect


With 🧡

Controlled Supply

Bitcoin

“A fixed money supply, or a supply altered only in accord with objective and calculable criteria, is a necessary condition to a meaningful just price of money.”

Fr. Bernard W. Dempsey, S.J. (1903-1960)

In a centralized economy, currency is issued by a central bank at a rate that is supposed to match the growth of the amount of goods that are exchanged so that these goods can be traded with stable prices. The monetary base is controlled by a central bank. In the United States, the Fed increases the monetary base by issuing currency, increasing the amount banks have on reserve or by a process called Quantitative Easing.

In a fully decentralized monetary system, there is no central authority that regulates the monetary base. Instead, currency is created by the nodes of a peer-to-peer network.

The Bitcoin generation algorithm defines, in advance, how currency will be created and at what rate. Any currency that is generated by a malicious user that does not follow the rules will be rejected by the network and thus is worthless.


Currency with Finite Supply


Block reward halving
Controlled supply

Bitcoins are created each time a user discovers a new block. The rate of block creation is adjusted every 2016 blocks to aim for a constant two week adjustment period (equivalent to 6 per hour.)

The number of bitcoins generated per block is set to decrease geometrically, with a 50% reduction every 210,000 blocks, or approximately four years. The result is that the number of bitcoins in existence will not exceed slightly less than 21 million.

Speculated justifications for the unintuitive value “21 million” are that it matches a 4-year reward halving schedule; or the ultimate total number of Satoshis that will be mined is close to the maximum capacity of a 64-bit floating point number. Satoshi has never really justified or explained many of these constants.

Cumulated bitcoin supply

This decreasing-supply algorithm was chosen because it approximates the rate at which commodities like gold are mined. Users who use their computers to perform calculations to try and discover a block are thus called Miners.





Executive Order 6102

History Lessons,
never to be forgotten!¡



Executive Order 6102 is an executive order signed on April 5, 1933, by US President Franklin D. Roosevelt “forbidding the hoarding of gold coin, gold bullion, and gold certificates within the continental United States.”

The executive order was made under the authority of the Trading with the Enemy Act of 1917, as amended by the Emergency Banking Act in March 1933.

Summary

  • Forbade ownership of quantities of gold coin, bullion, and gold certificates worth in excess of $100 (about 5 troy ounces), with exemptions for specific uses and collections;
  • Required all persons to deliver excess quantities of the above on or before May 1, 1933 in exchange for $20.67 per troy ounce;
  • Enabled Federal funding of Exchange Stabilization Fund using profit realized from international transactions against new Federal reserves.

The limitation on gold ownership in the United States was repealed after President Gerald Ford signed a bill legalizing private ownership of gold coins, bars, and certificates by an Act of Congress, codified in Pub.L.93–373,which went into effect December 31, 1974.

The stated reason for the order was that hard times had caused “hoarding” of gold, stalling economic growth and worsening the depression as the US was then using the gold standard for its currency

On April 6, 1933, The New York Times wrote, under the headline Hoarding of Gold, “The Executive Order issued by the President yesterday amplifies and particularizes his earlier warnings against hoarding.

On March 6, taking advantage of a wartime statute that had not been repealed, he issued Presidential Proclamation 2039 that forbade the hoarding ‘of gold or silver coin or bullion or currency’, under penalty of $10,000 and/or up to five to ten years imprisonment.”

The main rationale behind the order was actually to remove the constraint on the Federal Reserve preventing it from increasing the money supply during the depression.

The Federal Reserve Act (1913) required 40% gold backing of Federal Reserve Notes that were issued. By the late 1920s, the Federal Reserve had almost reached the limit of allowable credit, in the form of Federal Reserve demand notes, which could be backed by the gold in its possession.


Source:
https://wikipedia.com/






Sapere Aude



Etymology

It is from the epithet of a parable, explaining that a fool waits for the stream to stop before crossing, while a wise man forgoes comfort and crosses anyway.

The original use seems to be in Epistle II  of  Horace‘s Epistularum liber primus:

“Dimidium facti qui coepit habet: sapere aude” (“He who has begun is half done: dare to know!”).


Phrase

sapere audē

  1. Have the courage to think for yourself
  2. Have courage to use your own reason“, in the context of committing to tasks that need to be embarked upon, however unpleasant or awkward.
  3. “Dare to be wise”, the motto of the Enlightenment.

Usage notes

Kant answers the question in the first sentence of the essay: “Enlightenment is man’s emergence from his self-incurred immaturity (Unmündigkeit).”

He argues that the immaturity is self-inflicted not from a lack of understanding, but from the lack of courage to use one’s reason, intellect, and wisdom without the guidance of another.

Kant argued that using one’s reason is considered dangerous by most men and all women.

He exclaims that the motto of the Enlightenment is “Sapere aude“! – Dare to be wise!

“Enlightenment is man’s release from his self-incurred tutelage.

Tutelage is man’s inability to make use of his understanding without direction from another.

Self-incurred is this tutelage when its cause lies not in lack of reason but in lack of resolution and courage to use it without direction from another.

Sapere Aude!

‘Have courage to use your own reason!’- that is the motto of enlightenment.”

Immanuel Kant



Source:

https://wikipedia.org/




Convergence of blockchain with AI and IOT


IoT and AI are growing exponentially

Internet of Things – IoT

A future of transacting intelligent machines


• Individually, each of these technologies deserves all the attention they’re getting as enablers and disruptors

• But, taken together?

• Their transformative effect becomes multiplicative

A future driven by machine connectivity, data exchange and commercial services:

  • IoT connects billions of machines and sensors generate unprecedented quantities of real-time data
  • AI enables the machines to act on data and trigger services
  • Blockchain functions are the transaction layer where data and service contracts are securely stored and payments for services are settled

How does blockchain support intelligent connected machines?


Smart Contracts enable self-executing and self-enforcing contractual states

  • Custom financial instruments (tokens), records of ownership of an underlying physical asset (smart property), any
  • complex business logic that can be programmable
  • Can such applications be ideal for intelligent (AI) and connected (IoT) machines?
  • These machines are intelligent enough to negotiate contracts, but need a technology allowing them to securely sign and enforce them

Digital currencies create new forms of money

  • Programmable and active
  • Will such money be ideal for intelligent (AI) and connected (IoT) machines?
  • These machines will need digital currency to pay for services assigned through the smart contracts

How will the three technologies work together?


IoT – Internet of Things

  • Sensors allow us to cost-effectively gather tremendous amounts of data.
  • Connectivity allows us to transmit/broadcast these data.
  • But, there is a missing element: intelligence to process these data.

AI – Artificial Intelligence

  • Intelligence at the very edges of the network (mini-brains).
  • Combine with IoT and you have the ability to recognize meaningful patterns buried in mountains of data in ways that would be impossible for most humans, or even non-AI algorithms, to do.
  • But, there is a missing element: a secure storage layer for data and a transaction layer for services

DLT (blockchain) – Distributed Ledger Technology

  • Decentralized governance, coupled with no single point of failure, disintermediation, unalterable and searchable records of events.
  • Digital currencies and tokenized custom financial instruments.
  • Combine with AI and IoT and you have a new world of autonomous systems interacting with each other, procuring services from each other and settling transactions.

The technology stack of the future


Technology Stack of the Future

Toward a world of machine commerce


A world of Machine Commerce

M2M will need SSI (self-sovereign identities) – for objects!


Human Identities types

Object identities can be SSI by default

  • Multi-source, multi-verifier
  • Digitally signed, verifiable credentials that can prove issuer, holder and status
  • Secure peer-to-peer connections (permanent or session-based)
  • Exchange full credentials, partial credentials or ZKPs derived from credentials

Next milestone: Decentralized Organizations (DOs)


DOs are good at:

  • Coordinating resources that do not know/trust each other (including hybrid
  • H/M)
  • Governing in a geography-agnostic, censorship-resistant manner
  • Enabling short-term or informal organizational structures  (networks/communities)
  • Tracking and rewarding contribution

Challenges

  • Jurisdictional issues
  • Legislating new types of work for humans and work rules for machines
  • Governance modalities, including external supervision


Challenges


New/upgraded system architectures

• From legacy to blockchain/AI/IoT-native systems
• Integration, interoperability, backward compatibility
• ROI obvious ex post, difficult ex ante – Bootstrapping

Advanced analytics capabilities

• As devices at the edge become smarter, the smart contracts enabled by blockchain platforms will require more advanced data analytics capabilities and gateways to the physical world.

New Business Models

  • Disruptive innovation will dominate – but not without boom-and-bust cycles and big failures along the way.
  • Winners will NOT be the ones focusing on efficiency gains, but on disruptive models.

Key takeaways

• IoT, AI and DLT (blockchain) are foundational and exponentially growing technologies

  • When combined, they will create a new internet of connected, intelligent and commercially transacting machines
  • An era machine-to-machine (M2M) and human-to-machine (H2M) commerce is likely to emerge, with profound consequences on social and economic dynamics
  • New forms of corporations or organizational formats (code-only, autonomous) will emerge

• There are numerous challenges that must be overcome

  • IoT has outpaced the human internet, but is still a largely passive, insecure and privacy-vulnerable network
  • AI has made huge leaps, but still requires immense computational resources and is largely incompatible with edge computing
  • DLT is a new technology, largely untested at scale; both smart contracts and digital assets lack the regulatory clarity required for mass adoption

This work is available under a Creative Commons Attribution-Non-Commercial-No Derivatives license
© University of Nicosia,
Institute for the Future, unic.ac.cy/blockchain





With 💚

Welcome…

To the rabbit hole…



Why this crazyness with rabbits ?!? And their holes, you would ask ?!? Why is the rabbit hole so deep ?¿

And what does the rabbit hole has to do with that BitCorn thing  I keep hearing about all over the place ?¿

I like to start from the begining, as I think so I am 😋😂


Rabbit Hole is a play written by David Lindsay-Abaire. It was the recipient of the 2007 Pulitzer Prize for Drama. The play premiered on Broadway in 2006, and it has also been produced by regional theatres in cities such as Los Angeles, Philadelphia and Pittsburgh. The play had its Spanish language premiere in San Juan, Puerto Rico in Autumn of 2010.

The play deals with the ways family members survive a major loss, and includes comedy as well as tragedy. Cynthia Nixon won the 2006 Tony Award for Best Performance by a Leading Actress in a Play for her performance as Becca in the New York production, and the play was nominated for several other Tony awards.


Rabbit Hole


A situation, journey, or process that is particularly strange, problematic, difficult, complex, or chaotic, especially one that becomes increasingly so as it develops or unfolds.

An allusion to “Alice’s Adventures in Wonderland” by Lewis Carroll, it is used especially in the phrase “(go) down the rabbit hole.”

Overhauling the current tax legislation is a rabbit hole I don’t think this administration should go down at this point.I’ve stayed away from drugs and alcohol since coming to college. I have an addictive personality, so I decided to just avoid that rabbit hole altogether.


What does rabbit hole mean?

Used especially in the phrase going down the rabbit hole or falling down the rabbit hole, a rabbit hole is a metaphor for something that transports someone into a wonderfully (or troublingly) surreal state or situation.

On the internet, a rabbit hole frequently refers to an extremely engrossing and time-consuming topic.


Where does rabbit hole come from?


Alice falling down a hole with a jar in hand
Alice’s Adventures in WonderLand

Literally, a rabbit hole is what the animal digs for its home. The earliest written record of the phrase dates back to the 17th century. But the figurative rabbit hole begins with Lewis Carroll’s 1865 classic, Alice’s Adventures in Wonderland.

In its opening chapter, “Down the Rabbit-Hole,” Alice follows the White Rabbit into his burrow, which transports her to the strange, surreal, and nonsensical world of Wonderland.

Since then, Carroll’s rabbit hole has proved a popular and useful reference. The Oxford English Dictionary finds the first allusive rabbit hole in a 1938 edition of The Yale Law Journal: “It is the Rabbit-Hole down which we fell into the Law, and to him who has gone down it, no queer performance is strange.”

Over much of the 20th century, rabbit hole has been used to characterize bizarre and irrational experiences. It’s especially used to reference magical, challenging, and even dangerous places or positions, similar to Carroll’s topsy-turvy Wonderland.

Rabbit hole has many metaphorical applications—from frustrating red tape to the mind-bending complexity of science to hallucinations during altered states—all united by a common sense of passing into some labyrinthine, logic-defying realm that, once entered, is hard to get out of.

One can fall down the rabbit hole of government bureaucracy, healthcare, obtaining a green card, tax law, the political economy of modern Japan, puberty, college admissions, or quantum mechanics.

If you’re Neo in the hit film The Matrix, you can take the red pill—a pill that shows you the truth, as opposed to the blue pill, which keeps you in ignorance—and “see how deep the rabbit hole goes.”

In a related note, some people literally take pills and go down the rabbit hole of a psychedelic drug trip.

But as Kathryn Schulz observed for The New Yorker in 2015, rabbit hole has further evolved in the information age: “These days…when we say that we fell down the rabbit hole, we seldom mean that we wound up somewhere psychedelically strange. We mean that we got interested in something to the point of distraction—usually by accident, and usually to a degree that the subject in question might not seem to merit.”

Thanks to the abundance, variety, and instant access of content online, many fall down internet rabbit holes which are often spectacularly, and addictively, niche: scary stories, obscure conspiracy theories, or famous last meals, for instance.

Other rabbit holes tend to be opened up by specific services or social media, which serve users item after item, link after link: Wikipedia, Netflix, Amazon, Facebook, YouTube, and so forth.

These rabbit holes have become so common that people sometimes swap out rabbit for the name of the particular site, e.g. “I’ve fallen down an Instragram hole or “I’m falling down a wikihole.”


Who uses rabbit hole?


From formal documents to internet status updates, rabbit hole is a very popular and widespread expression. Unlike earlier iterations of the metaphor, internet rabbit holes convey less a sense of weirdness, disorientation, or difficulty than they do of an intensely captivating diversion.

Rabbit hole is also showing increasing use as a modifier, e.g. a rabbit-hole question or phenomenon.


Now… that we have a basic and broader understanding about this Hole and it’s rabbit that digged it 😋😂

Let me show you a journey that I took to get to know, understand, admire, be amazed and support the BitCorn everybody is so crazy about …


Bitcoin Glossary


Block

Blocks are found in the Bitcoin blockchain. Blocks connect all transactions together. Transactions are combined into single blocks and are verified every ten minutes through mining. Each subsequent block strengthens the verification of the previous blocks, making it impossible to double spend bitcoin transactions (see double spend below).

BIP

Bitcoin Improvement Proposal or BIP, is a technical design document providing information to the bitcoin community, or describing a new feature for bitcoin or its processes or environment which affect the Bitcoin protocol. New features, suggestions, and design changes to the protocol should be submitted as a BIP. The BIP author is responsible for building consensus within the community and documenting dissenting opinions.

Blockchain

The Bitcoin blockchain is a public record of all Bitcoin transactions. You might also hear the term used as a “public ledger.” The blockchain shows every single record of bitcoin transactions in order, dating back to the very first one. The entire blockchain can be downloaded and openly reviewed by anyone, or you can use a block explorer to review the blockchain online.

Block Height

The block height is just the number of blocks connected together in the block chain. Height 0 for example refers to the very first block, called the “genesis block.”

Block Reward

When a block is successfully mined on the bitcoin network, there is a block reward that helps incentivize miners to secure the network. The block reward is part of a “coinbase” transaction which may also include transaction fees. The block rewards halves roughly every four years; see also “halving.”

Change

Let’s say you are spending $1.90 in your local supermarket, and you give the cashier $2.00. You will get back .10 cents in change. The same logic applies to bitcoin transactions. Bitcoin transactions are made up of inputs and outputs. When you send bitcoins, you can only send them in a whole “output.” The change is then sent back to the sender.

Cold Storage

The term cold storage is a general term for different ways of securing your bitcoins offline (disconnected from the internet). This would be the opposite of a hot wallet or hosted wallet, which is connected to the web for day-to-day transactions. The purpose of using cold storage is to minimize the chances of your bitcoins being stolen from a malicious hacker and is commonly used for larger sums of bitcoins.

Confirmation

A confirmation means that the bitcoin transaction has been verified by the network, through the process known as mining. Once a transaction is confirmed, it cannot be reversed or double spent. Transactions are included in blocks.

Cryptography

Cryptography is used in multiple places to provide security for the Bitcoin network. Cryptography, which is essentially mathematical and computer science algorithms used to encrypt and decrypt information, is used in bitcoin addresses, hash functions, and the blockchain.

Decentralized

Having a decentralized bitcoin network is a critical aspect. The network is “decentralized,” meaning that it’s void of a centralized company or entity that governs the network. Bitcoin is a peer-to-peer protocol, where all users within the network work and communicate directly with each other, instead of having their funds handled by a middleman, such as a bank or credit card company.

Difficulty

Difficulty is directly related to Bitcoin mining (see mining below), and how hard it is to verify blocks in the Bitcoin network. Bitcoin adjusts the mining difficulty of verifying blocks every 2016 blocks. Difficulty is automatically adjusted to keep block verification times at ten minutes.

Double Spend

If someone tries to send a bitcoin transaction to two different recipients at the same time, this is double spending. Once a bitcoin transaction is confirmed, it makes it nearly impossible to double spend it. The more confirmations that a transaction has, the harder it is to double spend the bitcoins.

Full Node

A full node is when you download the entire blockchain using a bitcoin client, and you relay, validate, and secure the data within the blockchain. The data is bitcoin transactions and blocks, which is validated across the entire network of users.

Halving

Bitcoins have a finite supply, which makes them scarce. The total amount that will ever be issued is 21 million. The number of bitcoins generated per block is decreased 50% every four years. This is called “halving.” The final halving will take place in the year 2140.

Hash Rate

The hash rate is how the Bitcoin mining network processing power is measured. In order for miners to confirm transactions and secure the blockchain, the hardware they use must perform intensive computational operations which is output in hashes per second.

Hash (txid)

A transaction hash (sometimes referred to as a transaction ID or txid) is a unique identifier that can be used on any block explorer to look up all of the public details of a particular transaction. Every on-chain transaction has a unique hash made up of a long string of alphanumeric characters.

Mining

Bitcoin mining is the process of using computer hardware to do mathematical calculations for the Bitcoin network in order to confirm transactions. Miners collect transaction fees for the transactions they confirm and are awarded bitcoins for each block they verify.

Pool

As part of bitcoin mining, mining “pools” are a network of miners that work together to mine a block, then split the block reward among the pool miners. Mining pools are a good way for miners to combine their resources to increase the probability of mining a block, and also contribute to the overall health and decentralization of the bitcoin network.

Private Key

A private key is a string of data that shows you have access to bitcoins in a specific wallet. Think of a private key like a password; private keys must never be revealed to anyone but you, as they allow you to spend the bitcoins from your bitcoin wallet through a cryptographic signature.

Proof of Work

Proof of work refers to the hash of a block header (blocks of bitcoin transactions). A block is considered valid only if its hash is lower than the current target. Each block refers to a previous block adding to previous proofs of work, which forms a chain of blocks, known as a blockchain. Once a chain is formed, it confirms all previous Bitcoin transactions and secures the network.

Public Address

A public bitcoin address is cryptographic hash of a public key. A public address typically starts with the number “1.” Think of a public address like an email address. It can be published anywhere and bitcoins can be sent to it, just like an email can be sent to an email address.

RBF

RBF stands for Replace By Fee, and refers to a method that allows a sender to replace a “stuck” or unconfirmed transaction with a new one that uses a higher fee. This is done to make sure a transaction confirms as quickly as possible. The “replacement” transaction uses the same inputs as the original one. This is not considered a double spend, as the receiving address(es) typically remain the same.

Satoshi Nakamoto

Bitcoin’s existence began with an academic paper written in 2008 by a developer under the name of Satoshi Nakamoto. Satoshi is the name used as the original inventor of Bitcoin.

Transaction

A transaction is when data is sent to and from one bitcoin address to another. Just like financial transactions where you send money from one person to another, in bitcoin you do the same thing by sending data (bitcoins) to each other. Bitcoins have value because it’s based on the properties of mathematics, rather than relying on physical properties (like gold and silver) or trust in central authorities, like fiat currencies. 

Wallet

Just like with paper dollars you hold in your physical wallet, a bitcoin wallet is a digital wallet where you can store, send, and receive bitcoins securely. There are many varieties of wallets available, whether you’re looking for a web or mobile solution. Ideally, a bitcoin wallet will give you access to your public and private keys. This means that only you have rightful access to spend these bitcoins, whenever you choose to.


Sources:

https://dictionary.com/

https://wikipedia.com/

https://blockchain.com/

Digital Art by Free Spirit

Made with 💚 by Free Spirit

✌ & 💚



With 💚

Free Spirit’s Wondering…

Some moments of my online wondering…

R&D, wisdom, knowledge, curiosities, answers and many more questions 🙂🤣🙃




You have a Choice !!!

Power to the People !!!
Wake the F… Up !!!
No more excuses, you have a choice now !!!

WHO as in WORLD HEALTH ORGANISATION

P F I Z E R  Insider

Poem of the Legacy

Being Curious…

Of course it doesn’t comply…

The Problem with centralized Social-Media

10 Principles of Strategic Leadership

Global Reserve Currency

Psychology of a Market Cycle


Success

Triangle of Success



Be like a Tree…

If anyone understands this please enlighten me too 😊🤭🤗

http://www.revelationtimelinedecoded.com

ESG

For those that think WE are the Center of the Universe 🤣😅😂

Confident vs. Insecure People

Day by day…

Managing Complex Change

The Cone of Learning

The Hero’s Journey

Electromagnetic Field of the Heart

I-Ching

Language creates Reality

Sex Organs of the Machine World


Philosopher’s Stone

Isaac Newton

Abracadabra

Singularity

Multi-Mind Thought Control Process
APPLE INC.

Retrocausality

CERN


EGO

SYSCOIN ECOSYSTEM


JagStein

SysCoin

Bitcoin might bury FIAT 🙂 🤭 🙃

DEFI Ecosystem on Ethereum

DeFi Stack


Bitcoin Mining Ecosystem Map

…the other 6 Billion

bitcoin

This is about the other 6 Billion…

Top NFT Projects



Defender of the Flower

Flower of Life

Sacred Geometry

Seed & Flower of Life

Knowledge – An Antidote to Fear

JOIN THE REVOLUTION 😋 🤣 😋

Emotion – Judgement – Action

…violent recolution inevitable.

E S B I

Every generation…

LOVE YOUR RAGE
NOT YOUR CAGE

Revolution

The Times – January 3, 2009

REVOLUTION

Bitcoin Genesis Block – 03 January 2009

Introduction to Bitcoin

Introduction to Decentralized Finance

Introduction to Digital Currencies










All Metals We Mined

Map to Multiplication
Nikola Tesla

Top VC’s Investing in BlockChain Companies

Athmospheres of the Solar System

Global GDP 2021

Map of CyberSecurity Domains

21 Questions

Six Innovation Models

What May Happen in the next 100 Years

Abstract – “…to pull the body out
of dimension so that the person
can walk through solid objects
such as wooden doors.”
Okay 🤯 😳 🤯 ?¿?

China’s Social Credit System

Blockchain Platforms Comparison (BCP)


ARISE



With 💚

Why bitcoin matters

Why Bitcoin Matters ?


“A mysterious new technology emerges, seemingly out of nowhere, but actually the result of two decades of intense
research and development by nearly anonymous researchers.

Political idealists project visions of liberation and revolution onto it; establishment elites heap contempt and scorn on it.

On the other hand, technologists – nerds – are transfixed by it.

They see within it enormous potential and spend their nights and weekends tinkering with it.

Eventually mainstream products, companies and industries emerge to commercialize it; its effects become profound; and later, many people

wonder why its powerful promise wasn’t more obvious from the start.

What technology am I talking about?

Personal computers in 1975, the Internet in 1993, and – I believe – Bitcoin in 2014….

The practical consequence of solving this problem is that Bitcoin gives us, for the first time, a way for one Internet user to transfer a unique piece of digital property to another Internet user, such that the transfer is guaranteed to be safe and secure, everyone knows that the transfer has taken place, and nobody can challenge the legitimacy of the transfer.

The consequences of this breakthrough are hard to overstate.

What kinds of digital property might be transferred in this way?

Think about digital signatures, digital contracts, digital keys (to physical locks, or to online lockers), digital ownership of physical assets such as cars and houses, digital stocks and bonds …

and digital money”.

– Marc Andreessen, Founder of Netscape & well-known venture capitalist, 2014

Marc Lowell Andreessen

(/ænˈdriːsən/ann-DREE-sən;

born July 9, 1971) is an American entrepreneurinvestor, and software engineer.

He is the co-author of Mosaic, the first widely used web browser; co-founder of Netscape; and co-founder and general partner of Silicon Valleyventure capital firm Andreessen Horowitz.

He co-founded and later sold the software company Opsware to Hewlett-Packard.

Andreessen is also a co-founder of Ning, a company that provides a platform for social networking websites.

He sits on the board of directors of Meta Platforms.

Andreessen was one of six inductees in the World Wide Web Hall of Fame announced at the First International Conference on the World-Wide Web in 1994.

Shared with 💚 by Free Spirit

✌ & 💚

BitHouse with 💚