“THE FIAT STANDARD”




I am happy to share with you this chapter from my forthcoming book, The Fiat Standard, which will be out in November in hardcover, audio, and ebook formats.

Chapter 1: Introduction

On August 6, 1915, His Majesty’s Government issued this appeal:

“In view of the importance of strengthening the gold reserves of the country for exchange purposes, the Treasury has instructed the Post Office and all public departments charged with the duty of making cash payments to use notes instead of gold coins whenever possible.

The public generally are earnestly requested, in the national interest, to cooperate with the Treasury in this policy by

(1) paying in gold to the Post Office and to the Banks;

(2) asking for payment of cheques in notes rather than in gold;

(3) using notes rather than gold for payment of wages and cash disbursements generally”.

August 6th, 1915 – His Majesty’s Government

With this obscure and largely forgotten announcement, the Bank of England effectively began the global monetary system’s move away from a gold standard, in which all government and bank obligations were redeemable in physical gold.

At the time, gold coins and bars were still widely used worldwide, but they were of limited use for international trade, which necessitated resorting to the clearance mechanisms of international banks. 

Chief among all banks at the time, the Bank of England’s network spanned the globe, and its pound sterling had, for centuries, acquired the reputation of being as good as gold. 

Instead of the predictable and reliable stability naturally provided by gold, the new global monetary standard was built around government rules, hence its name. The Latin word fiat means ‘let it be done’ and, in English, has been adopted to mean a formal decree, authorization, or rule.

It is an apt term for the current monetary standard, as what distinguishes it most is that it substitutes government dictates for the judgment of the market.

Value on fiat’s base layer is not based on a freely traded physical commodity, but is instead dictated by authority, which can control its issuance, supply, clearance, and settlement, and even confiscate it at any time it sees fit.

With the move to fiat, peaceful exchange on the market no longer determined the value and choice of money. Instead, it was the victors of world wars and the gyrations of international geopolitics that would dictate the choice and value of the medium that constitutes one half of every market transaction.

While the 1915 Bank of England announcement, and others like it at the time, were assumed to be temporary emergency measures necessary to fight the Great War, today, more than a century later, the Bank of England is yet to resume the promised redemption of its notes in gold.

Temporary arrangements restricting note convertibility into gold have turned into the permanent financial infrastructure of the fiat system that took off over the next century.

Never again would the world’s predominant monetary systems be based on currencies fully redeemable in gold.

The above decree might be considered the equivalent of Satoshi Nakamoto’s email to the cryptography mailing list announcing Bitcoin, but unlike Nakamoto, His Majesty’s Government provided no software, white paper, nor any kind of technical specification as to how such a monetary system could be made practical and workable. Unlike the cold precision of Satoshi’s impersonal and dispassionate tone, His Majesty’s Government relied on appeal to authority, and emotional manipulation of its subjects’ sense of patriotism.

Whereas Satoshi was able to launch the Bitcoin network in operational form a few months after its initial announcement, it took two world wars, dozens of monetary conferences, multiple financial crises, and three generations of governments, bankers, and economists struggling to ultimately bring about a fully operable implementation of the fiat standard in 1971.

Fifty years after taking its final form, and one century after its genesis, an assessment of the fiat system is now both possible and necessary. Its longevity makes it unreasonable to keep dismissing the fiat system as an irredeemable fraud on the brink of collapse, as many of its detractors have done for decades. Many people at the end of their life today have never used anything but fiat money, and neither did their long-deceased parents. This cannot be written off as an unexplained fluke, and economists should be able to explain how this system functions and survives, despite its many obvious flaws.

There are, after all, plenty of markets around the world that are massively distorted by government interventions, but they nonetheless continue to survive. It is no endorsement of these interventions to attempt to explain how they persist.

It is also not appropriate to judge fiat systems based on the marketing material of their promoters and beneficiaries in government-financed academia and the popular press.

While the global fiat system so far avoided the complete collapse its detractors would predict, that cannot vindicate its promoters’ advertising of it as a free-lunch-maker with no opportunity cost or consequence. More than fifty episodes of hyperinflation have taken place around the world using fiat monetary systems in the past century. Moreover, the global fiat system avoiding catastrophic collapse is hardly enough to make the case for it as a positive technological, economic, and social development. 

Between the relentless propaganda of its enthusiasts and the rabid venom of its detractors, this book attempts to offer something new: an exploration of the fiat monetary system as a technology, from an engineering and functional perspective, outlining its purposes and common failure modes, and deriving the wider economic, political, and social implications of its use. I believe that adopting this approach to writing

The Bitcoin Standard contributed to making it the best-selling book on bitcoin to date, helping hundreds of thousands of readers across more than 20 languages understand the significance and implications of bitcoin. Rather than focus on the details of how bitcoin operates, I chose to focus on why it operates the way it does, and what the implications are. 

If you have read the Bitcoin Standard and enjoyed my exploration of bitcoin, I hope you will enjoy this exploration of the operation of fiat.

Perhaps counter-intuitively, I believe that by first understanding the operation of bitcoin, you can then better understand the equivalent operations in fiat.

It is easier to explain an abacus to a computer user than it is to explain a computer to an abacus user.

A more advanced technology performs its functions more productively and efficiently, allowing a clear exposition of the mechanisms of the simpler technology, and exposing its weaknesses.

For the reader who has become familiar with the operation of bitcoin, a good way to understand the operation of fiat is by drawing analogy to the operation of bitcoin using concepts like mining, nodes, balances, and proof of work.

My aim is to explain the operation and engineering structure of the fiat monetary system and how it operates, in reality, away from the naive romanticism of governments and banks who have benefited from this system for a century.

The first seven chapters of The Bitcoin Standard explained the history and function of money, and its importance to the economic order. With that foundation laid, the final three chapters introduced bitcoin, explained its operation, and elaborated on how its operation relates to the economic questions discussed in the earlier chapters.

My motivation as an author was to allow readers to understand how bitcoin operates and its monetary significance without requiring them to have a previous background in economics or digital currencies.

Had Bitcoin not been invented, the first seven chapters of The Bitcoin Standard could have served as an introduction to explaining the operation of the fiat monetary system.

This book picks up where Chapter 7 of “The Bitcoin Standard” left off. The first chapters of this book are modeled on the last three chapters of the Bitcoin Standard, except applied to fiat money. 

How does the fiat system actually function, in an operational sense? The success of bitcoin in operating as a bare-bones and standalone free market monetary system helps elucidate the properties and functions necessary to make a monetary system function.

Bitcoin was designed by a software engineer who boiled a monetary system down to its essentials. These choices were then validated by a free market of millions of people around the world who continue to use this system, and currently entrust it to hold more than $300 billion of their wealth.

The fiat monetary system, by contrast, has never been put on a free market for its users to pass the only judgment that matters on it. The all-too-frequent systemic collapses of the fiat monetary system are arguably the true market judgment emerging after suppression by governments.

With bitcoin showing us how an advanced monetary system can function entirely independently of government control, we can see clearly the properties required for a monetary system to operate on the free market, and in the process, better understand fiat’s modes of operation, and all-too-frequent modes of failure.

While fiat systems have not won acceptance on the free market, and though their failings and limitations are many, there is no denying the fact that many fiat systems have worked for large parts of the last century, and facilitated an unfathomably large number of transactions and trades all around the world. Its continued operation makes understanding it useful, particularly as we still live in a world that runs on fiat. Just because you may be done with fiat does not mean that fiat is done with you!

Understanding how the fiat standard works, and how it frequently fails, is essential knowledge for being able to navigate it.


This is a preview chapter from my forthcoming book, The Fiat Standard, which will be out in November in hardcover, audio, and ebook formats.

To begin, it’s important to understand that the fiat system was not a carefully, consciously, or deliberately designed financial operating system like bitcoin; rather, it evolved through a complex process of compromise between political constraints and expedience.

The next chapter illustrates this by examining newly-released historical documents on just how the fiat standard was born, and how it replaced the gold standard, beginning in England in the early twentieth century, completing the transition in 1971 across the Atlantic.

This is not a history book, however, and it will not attempt a full historical account of the development of the fiat standard over the past century, in the same way the Bitcoin Standard did not delve too deeply into the study of the historical development of the bitcoin software protocol. The focus of the first part of the book will be on the operation and function of the fiat monetary system, by making analogy to the operation of the bitcoin network, in what might be called a comparative study of the economics of different monetary engineering systems. 

Chapter 3 examines the underlying technology behind the fiat standard. Contrary to what the name suggests, modern fiat money is not conjured out of thin air through government fiat.

Government does not just print currency and hand it out to a society that accepts it as money. Modern fiat money is far more sophisticated and convoluted in its operation. The fundamental engineering feature of the fiat system is that it treats future promises of money as if they were as good as present money because the government guarantees these promises.

While such an arrangement would not survive in the free market, the coercion of the government can maintain it for a very long time. Government can meet any present financial obligations by diverting them onto future taxpayers or onto current fiat holders through taxes or inflation; and, further, through legal tender laws, the government can prevent any alternatives to its money from gaining traction.

By leveraging their monopoly on the legal use of violence to meet present financial obligations from potential future income, government fiat makes debt into money, forces its acceptance across society, and prevents it from collapsing.

Chapter 4 examines how the fiat network’s native tokens come into existence, using fiat’s antiquated and haphazard version of mining.

As fiat money is credit, credit creation in a fiat currency results in the creation of new money, which means that lending is the fiat version of mining.

Fiat miners are the financial institutions capable of generating fiat-based debt with guarantees from the government and/or central banks.

Unlike with bitcoin’s difficulty adjustment, fiat has no mechanisms for controlling issuance. Credit money, instead, causes constant cycles of expansion and contraction in the money supply with eventual devastating consequences, as this chapter examines.

Chapter 5 explains the topography of the fiat network, which is centered around its only full node, the US Federal Reserve.

The Fed is the only institution that can validate or refuse any transaction on any layer of the network.

Another 200 or so central bank nodes are spread around the world, and these have geographic monopolies on financial and monetary services, where they regulate and manage tens of thousands of commercial bank nodes worldwide.

Unlike with bitcoin, the incentive for running a fiat node is enormous.

Chapter 6 then analyzes balances on the fiat network, and how fiat has the unique feature where many, if not most, users, have negative account balances.

The enormous incentive to mine fiat by issuing debt means individuals, corporations, and governments all face a strong incentive to get into debt.

The monetization and universalization of debt is also a war on savings, and one which governments have persecuted stealthily and mostly quite successfully against their citizens over the last century.

Based on this analysis, Chapter 7 concludes the first section of the book by discussing the uses of fiat, and the problems it solves.

The two obvious uses of fiat are that it allows for the government to easily finance itself, and that it allows banks to engage in maturity-mismatching and fractional reserve banking while largely protected from the inevitable downside.

But the third use of fiat is the one that has been the most important to its survival: salability across space.

From the outset, I will make a confession to the reader. Attempting to think of the fiat monetary system in engineering terms and trying to understand the problem it solves have resulted in giving me an appreciation of its usefulness, and a less harsh assessment of the motives and circumstances which led to its emergence.

Understanding the problem this fiat system solves makes the move from the gold standard to the fiat standard appear less outlandish and insane than it had appeared to me while writing The Bitcoin Standard, as a hard money believer who could see nothing good or reasonable about the move to an easier money. 

Seeing that the analytical framework of “The Bitcoin Standard” was built around the concept of salability across time, and the ability of money to hold its value into the future, and the implications of that to society, the fiat standard initially appears as a deliberate nefarious conspiracy to destroy human civilization.

But writing this book, and thinking very hard about the operational reality of fiat, has brought into sharper focus the property of salability across space, and in the process, made the rationale for the emergence of the fiat standard clearer, and more comprehensible.

For all its many failings, there is no escaping the conclusion that the fiat standard was indeed a solution to a real and debilitating problem with the gold standard, namely its low spatial salability.

More than any conspiracy, the limited spatial salability of gold as global trade advanced allowed the survival of the fiat standard for so long, making its low temporal salability a tolerable problem, and allowing governments worldwide tremendous leeway to bribe their current citizens at the expense of their future citizens by creating the easy fiat tokens that operate their payment networks.

As we take stock of a whole century of operation for this monetary system, a sober and nuanced assessment can appreciate the significance of this solution for facilitating global trade, while also understanding how it has allowed the inflation that benefited governments at the expense of their future citizens.

Fiat may have been a huge step backward in terms of its salability across time, but it was a substantial leap forward in terms of salability across space.

Having laid out the mechanics for the operation of fiat in the first section, the book’s second section, Fiat Life, examines the economic, societal, and political implications of a society utilizing such a form of money with uncertain and usually poor inter-temporal salability.

This section focuses on analyzing the implications of two economic causal mechanisms of fiat money: the utilization of debt as money; and the ability of the government to grant this debt at essentially no cost.

Fiat increasingly divorces economic reward from economic productivity, and instead bases it on political allegiance. This attempted suspension of the concept of opportunity cost makes fiat a revolt against the natural order of the world, in which humans, and all other animals, have to struggle against scarcity every day of their lives.

Nature provides humans with reward only when their toil is successful, and similarly, markets only reward humans when they are able to produce something that others value subjectively.

After a century of economic value being assigned at the point of a gun, these indisputable realities of life are unknown to, or denied by, huge swathes of the world’s population who look to their government for their salvation and sustenance.

The suspension of the normal workings of scarcity through government dictat has enormous implications on individual time preference and decision-making, with important consequences to many facets of life.

In the second section of the book, we explore the impacts of fiat on family, food, education, science, health, fuels, and security. 

While the title of the book refers to fiat, this really is a book about bitcoin, and the first two sections build up the analytical foundation for the main course that is the third part of the book, examining the all-too-important question with which “The Bitcoin Standard” leaves the reader: what will the relationship between fiat and bitcoin be in the coming years?

Chapter 16 examines the specific properties of bitcoin that make it a potential solution to the problems of fiat.

While “The Bitcoin Standard” focused on bitcoin’s intertemporal salability, The Fiat Standard examines how bitcoin’s salability across space is the mechanism that makes it a more serious threat to fiat than gold and other physical monies with low spatial salability.

Bitcoin’s high salability across space allows us to monetize a hard asset itself, and not credit claims on it, as was the case with the gold standard.

At its most basic, bitcoin increases humanity’s capacity for long-distance international settlement by around 500,000 transactions a day, and completes that settlement in a few hours.

This is an enormous upgrade over gold’s capacity, and makes international settlement a far more open market, much harder to monopolize.

This also helps us understand bitcoin’s value proposition as not just in being harder than gold, but also in traveling much faster.

Bitcoin effectively combines gold’s salability across time with fiat’s salability across space in one apolitical immutable open source package.

By being a hard asset, bitcoin is also debt-free, and its creation does not incentivize the creation of debt. By offering finality of settlement every ten minutes, bitcoin also makes the use of credit money very difficult. At each block interval, the ownership of all bitcoins is confirmed by tens of thousands of nodes all over the world. There can be no authority whose fiat can make good a broken promise to deliver a bitcoin by a certain block time.

Financial institutions that engage in fractional reserve banking in a bitcoin economy will always be under the threat of a bank run as long as no institution exists that can conjure present bitcoin at significantly lower than the market rate, as governments are able to do with their fiat. 

Chapter 17 discusses bitcoin scaling in detail, and argues it will likely happen through second layer solutions which will be optimized for speed, high volume, and low cost, but involve trade-offs in security and liquidity.

Chapter 18 builds on this analysis to discuss what banking would look like under a Bitcoin Standard, while chapter 19 discusses how savings would work under such a system.

Chapter 20 studies bitcoin’s energy consumption, how it is related to bitcoin’s security, and how it can positively impact the market for energy worldwide.

With this foundation, the book can tackle the question: how can bitcoin rise in the world of fiat, and what are the implications for these two monetary standards coexisting?

Chapter 21 analyzes different scenarios in which bitcoin continues to grow and thrive, while Chapter 22 examines scenarios where bitcoin fails.

I hope you enjoyed this preview chapter from my forthcoming book, The Fiat Standard, which will be out in November in hardcover, audio, and ebook formats.



All the Credit goes to Saifedean Ammous


Shared with 💚 by Free Spirit

✌ & 💚

BitHouse with 💚

Staking Vs. Yield Farming Vs. Liquidity Mining

staking-vs-yield-farming-vs-liquidity-mining

Staking Vs. Yield Farming Vs. Liquidity Mining – Key Differences

The DeFi space is growing, and there is no reason to deny it. Enterprises and individuals want to capitalize on the benefits of decentralized finance with the newly emerging solutions. Decentralized finance has not only opened up the possibilities for improved financial inclusion throughout the world but also strengthened the possibilities for using and managing digital assets.

The most notable factor which comes up in discussions about DeFi trading would refer to the staking vs. yield farming vs. liquidity mining differences.

All three of them are popular solutions in the domain of DeFi for obtaining plausible returns on crypto assets.

The three approaches differ in the way participants have to pledge their crypto assets in decentralized protocols or applications. 

In addition, the underlying technologies also provide further indications of differences between staking and the other two approaches.

Understanding Yield Farming

The first thing that you should take into account about yield farming is its definition. Yield generation is a popular approach for obtaining returns on crypto assets.

Basically, it offers a flexible approach for earning passive income through depositing crypto assets in a liquidity pool.

The liquidity pools in the case of yield farming could refer to bank accounts in the conventional sense.

Yield generation is the practice that involves investors locking in their crypto assets in liquidity pools based on smart contracts.

The assets locked in the liquidity pools are available for other users to borrow in the same protocol. 

Yield farming is a crucial aspect of the DeFi ecosystem as it supports the foundation of DeFi protocols for enabling exchange and lending services.

It is also essential for maintaining the liquidity of crypto assets on different decentralized exchanges or DEXs.

Yield farmers could also earn rewards in the form of APY. 

Working of Yield Generation

In order to develop a better impression of yield generation in staking vs. yield farming vs. liquidity mining, it is important to understand how to yield generation works. First of all, it is important to note that Automated Market Makers or AMMs are responsible for yield farming. 

AMMs are just smart contracts that leverage mathematical algorithms for enabling  digital asset trading.

Automated Market Makers play a highly critical role in yield farming for maintaining consistent liquidity as the transactions do not need any counterparties for the transaction.

You could find two distinct components in AMMs such as liquidity pools and liquidity providers. 

Liquidity pools are basically the smart contracts that drive the DeFi ecosystem. The pools include digital assets which can help users in purchasing, selling, borrowing, lending, and swapping tokens.

Liquidity providers are the users or investors who have locked their assets in the liquidity pool.

Yield farming also offers a plausible foundation for easier trading of tokens with low trading volume in the open market. 

Risks in Yield Farming

The understanding of staking vs. yield farming vs. liquidity mining can only get better with an awareness of risks with each.

It is important to note that yield generation offers high risk and high reward ventures for investment.

The notable risks with yield farming include impermanent loss, smart contract risk, composability risk, and liquidation risk.   

Understanding Staking

The second important entry in a debate on staking vs. yield farming vs. liquidity mining would obviously bring another notable and common consensus algorithm. Staking is basically an interesting way of pledging crypto assets as collateral in the case of blockchain networks leveraging the Proof-of-Stake algorithm. Just like miners use computational power for achieving consensus in Proof-of-Work blockchains, users with the highest stakes are selected for validating transactions on the PoS blockchains. 

Working of the Proof of Stake Consensus

You might be wondering about the potential rewards for staking your crypto assets in a PoS blockchain-based DeFi protocol. First of all, you are investing in a highly scalable blockchain consensus algorithm with staking, which also ensures improved energy efficiency. Proof-of-Stake algorithms also create new avenues of opportunities for earning rewards. 

With higher stakes in the protocol, investors could get better rewards from the network. It is important to note that rewards in the case of staking are allocated on-chain. Therefore, new tokens of the cryptocurrency are minted and distributed as staking rewards for the validation of each block. PoS blockchain does not imply the need for expensive computational equipment, thereby providing better usability. 

Risks in Staking

The risks associated with Proof-of-Stake protocols are also another highlight in discussions on staking vs. yield farming vs. liquidity mining.

Interestingly, the aspect of risk is considerably lower in the case of staking when compared to other approaches for passive investment. You should note that the safety of the staked tokens depends directly on the safety of the protocol. 

At the same time, you would still notice some prominent risks in staking cryptocurrencies, such as slashing, volatility risks, validator risks, and server risks. In addition, you might have to encounter issues of loss or theft of funds, waiting periods for rewards, project failure, liquidity risks, minimum holdings, and extended lock-up periods. 

Understanding Liquidity Mining

The final entry in the staking vs. yield farming vs. liquidity mining also deserves adequate attention when it comes to discussions on DeFi. As a matter of fact, liquidity mining serves as the core highlight in any DeFi project. Furthermore, it also focuses on offering improved liquidity in the DeFi protocols

Participants have to offer their crypto assets to liquidity pools in DeFi protocols for the purpose of crypto trading. However, it is important to note that participants do not offer crypto assets into liquidity pools for crypto lending and borrowing in the case of liquidity mining. Investors place their crypto assets in trading pairs such as ETH/USDT, and the protocol offers a Liquidity Provider or LP token to them. 

Working of Liquidity Mining

A deeper understanding of how liquidity mining works can help in anticipating its differences with the other strategies for crypto investment.

The investors would receive rewards from the protocol for the tokens they place in the liquidity pool.

The rewards in liquidity mining are in the form of native governance tokens, which are mined at every block. 

In addition, investors also have the LP token from the first stage of locking their crypto assets into the liquidity pool.

It is important to note that the reward in liquidity mining depends profoundly on the share in total pool liquidity.

Furthermore, the newly minted tokens could also offer access to governance of a project alongside prospects for exchanging to obtain other cryptocurrencies or better rewards. 

Risks in Liquidity Mining

The understanding of staking vs. yield farming vs. liquidity mining would be complete with an impression of their risks.

Just like the other two approaches, liquidity mining also presents some notable risks such as impermanent loss, smart contract risks, and project risks. In addition, liquidity miners are also vulnerable to the rug pull effect in their projects. 

Staking vs. Yield Farming vs. Liquidity Mining – Key Differences

Staking vs Yield Farming vs Liquidity Mining
Staking vs Yield Farming vs Liquidity Mining

The differences between the three players in staking vs. yield farming vs. liquidity mining would refer directly to some key pointers. Here are some of them outlined in brief for your understanding. 

Yield farming is a proven approach for investing your crypto assets in liquidity pools of protocols.

Staking involves locking your crypto assets in the protocol in return for privileges to validate transactions on the protocol.

Liquidity mining involves locking in crypto assets in protocols in return for governance privileges in the protocol.

In terms of objectives, yield farming aims to offer you the highest possible returns on the crypto assets of users. On the other hand, liquidity mining focuses on improving liquidity of a DeFi protocol. Furthermore, staking emphasizes maintaining the security of a blockchain network.

Bottom Line 

On a concluding note, it is quite clear that staking as well as yield generation and liquidity miners provide distinct approaches for investing crypto assets.

The growing attention towards crypto assets is undoubtedly opening up many new opportunities for investors.

However, investors need to understand the strategies they need to follow for the type of returns they are expecting. 

Therefore, a clear impression of staking vs. yield farming vs. liquidity mining  differences could help in making a plausible decision.

Yield generation, liquidity mining, and Proof-of-Stake blockchains also have some setbacks you should look for.

Start discovering more about yield farming and the other two crypto investment strategies now.


*Disclaimer: The article should not be taken as, and is not intended to provide any investment advice. Claims made in this article do not constitute investment advice and should not be taken as such. 101 Blockchains shall not be responsible for any loss sustained by any person who relies on this article. Do your own research!

Shared with 💚 by Free Spirit

✌ & 💚

BitHouse with 💚


Bitcoin – Power to the People by BitHouse-Co

Redbubble Shop BitHouse

For the first time in human history there is at the disposal of the masses a tool that eliminates the middlemen and takes trust from the hands of humans and beautifully makes it a mathematics code that cannot be breaken, hacked or tricked…

https://www.redbubble.com/shop/ap/99847715?asc=u

Made with 💚 by Free Spirit

✌ & 💚

BitHouse with 💚

Bitcoin Quotes

“Bitcoin actually has the balance and incentives right, and that is why it is starting to take off. “

Julian Assange

Bitcoin has the balance and incentives right

” It isn’t obvious that the world had to work this way.

But somehow the universe smiles on encryption.”

Julian Assange

The universe smiles on encryption

” The innovation is that BTC is hard to shut down. […]

Designed from the ground up to survive under the most adversarial conditions. “

Hasu

Bitcoin is hard to shut down

” Bitcoin is the most successful privacy coin to date. “

Pierre Rochard

Most successful privacy coin to date

” Bitcoin is a technological innovation that happens once a species. “

Trace Mayer

Technological innovation that happens once in a species

” Bitcoin doesn’t care about who you are or what your feelings are.

Bitcoin represents equal opportunity to participate in a system not encumbered by our legacy fiat structures. “

White Rabbit

Participate in a system not encumbered by FIAT

” We’re here to unfuck the money and there’s no stopping us. Fix the money, change the world. “

White Rabbit

Fix the money, change the world

” Hardly anybody actually understands money. “

Nick Szabo

Nobody underatands money

” When you have a disruptive technology, they call it a category killer.

Bitcoin is a serial killer – it’s going to go through 40 or 50 different industries. “

Dan Morehead

Bitcoin is a serial killer

” It’s 21 million or death.”

Robert Breedlove

21 million or death

” It might make sense just to get some in case it catches on. “

Satoshi Nakamoto

In case it catches on

” Trusted third parties are security holes. “

Nick Szabo

Trusted third parties

” There are only going to be 21 million coins, there are billions of people in the world, some reasonable percentage of who might find it interesting to own a piece of Bitcoin.”

Adam Back

21 million coins

” I think it’s essential for a program of this nature to be open source. “

Satoshi Nakamoto

Open Source

” SHA-256 is very strong. It’s not like the incremental step from MD5 to SHA1.

It can last several decades unless there’s some massive breakthrough attack. “

Satoshi Nakamoto

Sha-256

” Code mixed with robust game theory is superior to hierarchical command and control. “

ℭoinsure

Code superior to hierarchical command and control

” Given that money is one half of every commercial transaction and that whole civilizations literally rise and fall based on the quality of their money, we are talking about an awesome power, one that flies under the cover of night. “

Ron Paul

Money…an awesome power

” The world has to adapt to bitcoin, not the other way round. “

Herzmeister

The world has to adapt to bitcoin

” When I first bought bitcoin it took me two years of speculation to understand what Bitcoin really was.

But once I fully had a grasp of it, it was life altering. “

Russell Okung

Bitcoin is life altering

” Many countries stand to gain from Bitcoin’s adoption as it would remove their dependence on the US dollar and provide them with a feasible alternative. “

Misir Mahmudov

Bitcoin a feasible alternative to the US $

” Bitcoin is a optimist bet on the future, a bet on human ingenuity.

Gold is a pessimist bet on the past and, often a bet the end of civilization. “

Rodolfo Novak

Bitcoin a bet on human ingenuity

” Everyone has got to believe in something.

Why not believe in something verifiable and unforgeable. “

Hass McCook

Believe in something verifiable and unforgeable

” Open source software is a meritocracy of ideas, not of people.

So people are always talking about “Who controls Bitcoin?”

Good ideas control Bitcoin. Not people.”

Ben Prentice

Good ideeas control Bitcoin

Bitcoin is a seed of hope in a society which lost vision years ago and perspective just recently. “

Kim Neunert

Bitcoin a seed of hope

” Bitcoin has an inescapable, unavoidable, and omnipotent magnetism for the brightest and most revolutionary minds on the planet.

I’ve never witnessed anything like it. “

Brandon Bridge

Bitcoin’s magnetism

” This is why proof of work needs to be expensive, if it is cheap you can roll back things easily.

You want it to be very difficult to change history.

The only way to make it difficult to change history is to make the process of writing the current history very expensive. “

Jimmy Song

Difficult to change history

” Bitcoin is like gold but with this magical ability that you can teleport it.”

Vijay Boyapati

Bitcoin magical ability to teleport it

” Can Bitcoin be stopped? “Not really, this thing is a beast.

As Mises wrote:

Ideas can only be overcome by other ideas. “

Trace Mayer

Bitcoin cannot be stopped

” I’m not here to fix Bitcoin. “

Michael Saylor

Fix bitcoin

” Buying bitcoin is the most powerful protest an individual can make against the current economic system. “

Luc Dossis

Buying bitcoin is the most powerful protest

” These numbers have nothing to do with the technology of the devices; they are the maximums that thermodynamics will allow.

And they strongly imply that brute-force attacks against 256-bit keys will be infeasible until computers are built from something other than matter and occupy something other than space. “

Bruce Schneier

Maximums that thermodynamics will allow

” Cryptocurrency is such a powerful concept that it can almost overturn governments. “

Charles Lee

Cryptocurrency can almost overturn governments

” Bitcoin will do to banks what email did to the postal industry. “

Rick Falkvinge

Bitcoin is the email for the postal industry

” I do think Bitcoin is the first [encrypted money] that has the potential to do something like change the world. “

Peter Thiel

Bitcoin has the potential to change the world

” Bitcoin is the most important invention in the history of the world since the Internet. “

Roger Ver

Bitcoin the most important invention in the history since the Internet

” Gold is a great way to preserve wealth, but it is hard to move around. You do need some kind of alternative and Bitcoin fits the bill. “

Jim Rickards

Bitcoin fits the bill as a way to preserve wealth

” You can’t stop things like Bitcoin.

It will be everywhere and the world will have to readjust.

World governments will have to readjust. “

John McAfee

Bitcoin will be everywhere and the world will have to readjust

” I think the fact that within the bitcoin universe an algorithm replaces the function of the government… is actually pretty cool. “

Al Gore

An algorithm replaces the function of government

People have made fortunes off Bitcoin, some have lost money. It is volatile, but people make money off of volatility too. “

Richard Branson

Some lost, some won with Bitcoin

” The ability to create something which is not duplicable in the digital world has enormous value…

Lot’s of people will build businesses on top of that. “

Eric Schmidt

Create something wich is not duplicable

PayPal had these goals of creating a new currency.

We failed at that…

I think Bitcoin has succeeded on the level of a new currency, but the payment system is lacking. “

Peter Thiel

Bitcoin succeeded as a new currency

” As people move into Bitcoin for payments and receipts they stop using US Dollars, Euros and Chinese Yuan which in the long-term devalues these currencies. “

John McAfee

Bitcoin devalues $ € ¥

” Bitcoin is the currency of resistance…

If Satoshi had released Bitcoin 10 years. earlier, 9/11 would never have happened. “

Max Keiser

Bitcoin the currency of resistance

“At its core, bitcoin is a smart currency, designed by very forward-thinking engineers. “

Peter Diamandis

Bitcoin is a smart currency

” The internet is going to be one of the major forces for reducing the role of government.

One thing that’s missing but that will soon be developed, is a reliable e-cash. “

Milton Friedman

E-Cash

” Bitcoin is a technological tour de force. “

Bill Gates

Tour de force

” If you don’t believe it or don’t get it, I don’t have the time to try to convince you, sorry. “

Satoshi Nakamoto

Don’t have the time

” WikiLeaks has kicked the hornet’s nest, and the swarm is headed towards us. “

Satoshi Nakamoto

WikiLeaks

” Lost coins only make everyone else’s coins worth slightly more.

Think of it as a donation to everyone.

Satoshi Nakamoto

Lost Coins

” In a few decades when the reward gets too small, the transaction fee will become the main compensation for [mining] nodes.

I’m sure that in 20 years there will either be very large transaction volume or no volume.

Satoshi Nakamoto

Transaction fee

” As computers get faster and the total computing power applied to creating bitcoins increases, the difficulty increases proportionally to keep the total new production constant.

Thus, it is known in advance how many new bitcoins will be created every year in the future.

Coins have to get initially distributed somehow, and a constant rate seems like the best formula.

Satoshi Nakamoto

Coins distribution at a constant rate is the best formula

” Bitcoin is the beginning of something great: a currency without a government, something necessary and imperative. “

Nassim Taleb

Bitcoin a currency without a government

” Those who believe in Bitcoin also believe in cleverness. “

Arif Naseem

Believe in bitcoin believe in cleverness

” Bitcoin is the most stellar and most useful system of mutual trust ever devised. “

Arif Naseem

Bitcoin a system of mutual trust

“Cryptocurrency is freedom, Banking is slavery. “

Arif Naseem

Cryptocurrency is freedom

” Our basic thesis for bitcoin is that it is better than gold. “

Tyler Winklevoss

Bitcoin better than gold

” I think the whole narrative of blockchain without bitcoin will amount to very little. “

Fred Ehrsam

Blockchain without bitcoin

” Every informed person needs to know about Bitcoin because it might be one of the world’s most important developments. “

Leon Louw

Bitcoin world’s most important developments

” Bitcoin is a very exciting development, it might lead to a world currency.

I think over the next decade it will grow to become one of the most important ways to pay for things and transfer assets. “

Kim Dotcom (CEO of MegaUpload)

 

Bitcoin might lead to a world currency

” Bitcoin may be the TCP/IP of money. “

Paul Buchheit (Creator of Gmail)

Bitcoin the TCP/IP of money

” We have elected to put our money and faith in a mathematical framework that is free of politics and human error. “

Tyler Winklevoss (Co-inventor of Facebook)

Mathematical framework free of politics and human error

” I really like Bitcoin.

I own Bitcoins.

It’s a store of value, a distributed ledger.

It’s a great place to put assets, especially in places like Argentina with 40 percent inflation, where $1 today is worth 60 cents in a year, and a government’s currency does not hold value.

It’s also a good investment vehicle if you have an appetite for risk.

But it won’t be a currency until volatility slows down. “

David Marcus (CEO of Paypal)

Bitcoin a store of value

” [Virtual Currencies] may hold long-term promise, particularly if the innovations promote a faster, more secure and more efficient payment system. “

Ben Bernanke (Chairman of the Federal Reserve)

Bitcoin may hold long-term promise

There are 3 eras of currency: Commodity based, politically based, and now, math based. “

Chris Dixon (Co-founder of Hunch now owned by Ebay, Co-founder of SiteAdvisor now owned by McAfee)

Math based currency

” Bitcoin is here to stay.

There would be a hacker uproar to anyone who attempted to take credit for the patent of cryptocurrency.

And I wouldn’t want to be on the receiving end of hacker fury. “

Adam Draper

Bitcoin is here to stay

” It’s money 2.0, a huge hugehuge deal. “

Chamath Palihapitiya (Previous head of AOL instant messenger)

Money 2.0

” If there is one positive takeaway from the collapse of Mt.Gox, it is the willingness of a new generation of Bitcoin companies to work together to ensure the future of Bitcoin and the security of customer funds. “

Brian Armstrong (CEO of Coinbase)

Future of bitcoin

” Bitcoin seems to be a very promising idea.

I like the idea of basing security on the assumption that the CPU power of honest participants outweighs that of the attacker.

It is a very modern notion that exploits the power of the long tail. “

Hal Finney

Bitcoin a promising idea

” Bitcoin enables certain uses that are very unique.

I think it offers possibilities that no other currency allows.

For example the ability to spend a coin that only occurs when two separate parties agree to spend the coin; with a third party that couldn’t run away with the coin itself. “

Pieter Wuille

Bitcoin enables uses that are very unique

” At its core, bitcoin is a smart currency, designed by very forward-thinking engineers.

It eliminates the need for banks, gets rid of credit cardfees, currency exchange fees, money transfer fees, and reduces the need for lawyers in transitions… all good things. “

Peter Diamandis

Good things

” There is so much potential, … I am just waiting for it to be a billion dollar industry.” “ Wow, Silk Road actually works ” “

Charlie Shrem

Silk Road actually works

Made with 💚 by Free Spirit

✌ & 💚


BitHouse with 💚


Smart Contracts Networks

Top upcoming Smart Contract Networks


Comparing the Top Upcoming Smart Contract Networks

Shared with 💚 by Free Spirit

✌ & 💚



BitHouse with 💚


Kasparov: Crypto means Freedom

Garry Kasparov: Crypto Means Freedom

The chess grandmaster expects a basket of coins to replace the dollar within a decade.

Garry Kasparov (Mark Wilson/Getty Images)

Garry Kasparov knows math. He knows logic, strategy and decision-making. Widely regarded as the greatest chess player in the history of mankind, the Russian grandmaster – ranked No. 1 from 1984 to 2005 – sees the world with a certain clarity.

So it will delight many in the blockchain industry to learn that Kasparov, easily one of the smartest people alive, is now a champion of cryptocurrency. And it’s partly because of math. Kasparov has spent his “retirement” opposing Russian President Vladimir Putin (a defiance that once got him tossed in jail), fighting for humanitarian causes and serving as chairman of the Human Rights Foundation (a nonprofit that strongly supports bitcoin as a freedom-giving tool). Now he views crypto as a way to check government power. Bitcoin offers protection against rampant government spending, says Kasparov, “because you’re protected by math” – by the logic of the code itself.

Kasparov also sees merit in non-fungible tokens. In December, in partnership with 1Kind, he dropped a series of 32 NFTs that showcase iconic moments from his life: the 1985 match that crowned him as the youngest world chess champion, the epic battle against International Business Machines’ artificial intelligence-powered “Deep Blue” and speeches against totalitarian governments.

It’s this battle against totalitarianism that has defined the current chapter of his life, and Kasparov sees crypto as part of that struggle. Or as the grandmaster puts it, “I believe that supporting crypto is an important part of my contribution to the future of humanity.”

CoinDesk: How’d you get into the crypto space?

Kasparov: If you followed my career and read about my early interest in computers and technology, you should not be surprised that I was very excited when I recognized the value of cryptocurrencies and NFTs.

This goes all the way back to the ‘80s; I always tried to be at the cutting edge. It started with chess. But I also saw an opportunity to use computers and new tools to advance individual freedoms. It’s my belief that technology should help people fight back against the power of the state.

How do cryptocurrencies fit into that?

Cryptocurrencies become an inseparable part of or progress, because the whole world is moving digital.

And if the economy becomes more digital, so does the money. Another philosophical reason is that … governments [have] unlimited opportunities to print money. And printing money is the most exquisite form of borrowing from us and from future generations.

And I believe that cryptocurrencies – with bitcoin as a standard – offer a protection against this onslaught of the government, because you’re protected by math. You’re protected by the limited number of any code behind the respective currency. Cryptocurrencies, and all the products related to cryptocurrencies, are absolutely vital for the future development of our world.

How, specifically, did you first get involved?

My first indirect involvement was through the Human Rights Foundation. Because in the Human Rights Foundation, we had a few experts that have been advocating cryptocurrencies at a very early stage. And as an organization, we offer support to the dissidents around the world.

We thought about using crypto as a way to help them to get material help, because in many countries it was impossible – and it’s still impossible – to actually get proper funding. So crypto offered an opportunity to support these activists indirectly. And the more I learned about it, the more interested I got in the whole mechanism.

Can you elaborate on why this is important to you?

Look, crypto is a controversial thing. Because you hear a lot of people say, “Oh, that’s money laundering. That helps bad guys.” True. I mean, no technology is uniquely good, because it’s technology. Humans still have a monopoly for evil.

So, I’ve been doing a lot of talks about it, and I’ll say, “Look, it’s not the magic wand or the terminator. It’s not a harbinger of utopia or dystopia. It’s a tool.” Crypto is a tool. And of course it could benefit some bad guys with maligned intentions. But it’s about the balance, it’s about trade-offs. And I think the balance is so much in favor of progress.It’s like the dot-com bubble. 99.9% will be gone. But those that survive will become the Googles of the world.

You mentioned crypto’s ability to help protect human rights in undemocratic countries. What do you see as the benefits in democratic countries?

In the democratic countries in America and Europe, trillions of dollars will be printed. I’m an American taxpayer. And I understand that you need to build new infrastructure. But I’m not happy to see that the government has a free hand to use my taxes, basically to devalue [the dollar].

So I think it’s very important that technology would offer me an opportunity to fight back, to protect my hard-earned fortune. And I think that bitcoin – which I believe is online gold – and other cryptocurrencies are the way to the future. I’m not a financial expert, but I would not be surprised if, I would not be surprised if, in 10 years’ time, the dollar will be replaced by the basket of coins as a standard.

I’m guessing it’s safe to say you own bitcoin?

I’m a great believer in the future of coins.

I suppose if you believe that, then it would almost be foolish not to be buying Bitcoin?

Yes.

Thoughts on the future of bitcoin?

Well, I think bitcoin will remain as a standard. But of course it cannot stay alone. So that’s why you have more coins coming in. It’s a natural process. Now we have thousands and thousands of coins. It’s like the dot-com bubble. Ninety-nine point nine percent will be gone. But those that survive will become the Googles of the world. I’m not here to judge which one, but there will be few that will survive – that’s why I said basket of coins.

In the past, your championing of human rights has gotten you in trouble with the Russian authorities. Given that background, are you concerned that your support for cryptocurrency can get you in hot water?

Well, this is definitely a no. [In the past,] I was in hot water. To give you an idea, one of the NFTs is a picture of my first arrest in Russia. So it’s all reflected in my NFT. Look, this is much less perilous than to attack Putin directly.

I grew up in the Soviet Union, and learned from my mother and my teacher the motto of Soviet dissidents, “Do what you must, and so be it.” And I believe that supporting crypto is an important part of my contribution to the future of humanity. And, again, I [view it] as a much less risky endeavor than speaking publicly about Putin or other dictators.

How would you describe your NFT project?

I don’t pretend to be a great expert in NFTs, but I’m not aware of anything similar that exists. It’s a collection of 30-plus NFTs that are related to special events in my life and special people in my life. This is a story that connects you to very personal moments. Every NFT has a video message.

It’s all connected to the physical assets, like my notebooks from the ‘70s. Thanks to my late mother, who preserved this archive, you can actually look at me scribbling in 1973.

The NFTs all reflect the moments of me growing up, learning from my mother, and from my teachers, and then fighting for the title, and then shifting my life and moving into human rights and computers.

Interesting. This feels almost like a memoir, in a sense. I’ve worked with CEOs before to collaborate on their memoirs, and one thing I’ve found is that the process can almost be emotional, or even a bit therapeutic. Did you have any sense of that?

The whole story starts from a very emotional moment, though it’s a tragic one. My mother died on Christmas day last year, from COVID. And I couldn’t be next to her, and that was a really big blow because we were so close.

While she was alive, I didn’t even know that she preserved all these archives. She was not happy to talk about the past. That’s why I [held off] on any major publication that would highlight [the past]. I wrote two books, but not the one that could tell everything.

After she died, I thought it would be right for me [to honor] her memory to actually start doing things. I’m doing a documentary now; it’s in Russian. The first segment will be ready early next year. And I hope I can cover my entire chess career, and it’s for her. It’s dedicated for her. And this [NFT] project was inspired by this tragedy. I thought it was very important to show my personal life and her connection, and why she was so important.


Shared with 💚 by Free Spirit

✌ & 💚

BitHouse with 💚


A Design For An Efficient Coordinated Financial Computing Platform

A Design For An Efficient Coordinated Financial Computing Platform

Jag Sidhu

Feb 25, 2021·41 min read

Abstract

Bitcoin was the first to attempt to offer a practical outcome in the General’s Dilemma using Crypto Economic rationale and incentives. Ethereum was the first to abstract the concept of Turing completeness within similar frameworks assumed by Bitcoin.

What Syscoin presents is a combination of both Bitcoin and Ethereum with intuitions built on top to achieve a more efficient financial computing platform which leverages coordination to achieve consensus using Crypto Economic rationale and incentives.

We propose a four-layer tech stack using Syscoin as the base (host) layer, which provides an efficient (ie, low gas cost per transaction) platform.

Some of the main advantages include building scalable decentralized applications, the introduction of a decentralized cost model around Ethereum Gas fees.

This new model proposes state-less parallelized execution and verification models while taking advantage of the security offered by the Bitcoin protocol. We may also refer to this as Web 3.0.

Table Of Contents

  • Abstract
  • Introduction
  • Syscoin Platform
  • Masternode Configuration
  • Chain Locks
  • Blockchain as a Computational Court
  • Scalability and Security
  • Efficiency
  • State Liveness and State Safety
  • Avoiding Re-execution of Transactions
  • Validity Proof Systems Overtop Proof-of-Work Systems
  • Quantum Resistance:
  • A Design Proposal for Web 3.0
  • Optimistic vs ZkRollup
  • Decentralized Cost Model
  • State-less Layer 1 Design
  • Related Works
  • Commercial Interests
  • Functional Overview
  • Give Me The Goods
  • Blockchain Foundry
  • Acknowledgements
  • References

Introduction

Syscoin is a cryptocurrency borrowing security and trust models of Bitcoin but with services on top which are conducive for businesses to build distributed applications through tokenization capabilities.

Syscoin has evolved since being introduced in 2013 where it offered a unique set of services through a coloured coin implementation on top of Bitcoin.

These services included aliases (identity), assets (tokens), offers (marketplace), escrow (multisig payments between aliases and marketplaces), and certificates (digital credentials).

In its current iteration, it has evolved to serve availability of consensus rather than data storage itself which requires some liveness guarantees better suited to systems like Filecoin and IPFS.

The recent iteration of Syscoin, version 4.0, streamlined the on-chain footprint to exclusively serve assets, a service which requires on-chain data availability for double-spend protection.

Ultimately, the only data that belongs on the blockchain are proofs that executions occurred (eg, coin transfers, smart contract executions, etc.) and information required to validate those proofs.

We introduced high-throughput payment rails for our asset infrastructure through an innovation we called Z-DAG [1]. This innovation offered real-time probabilistic guarantees of double-spend protection and ledger settlement for real-time point-of-sale. As a result, the token platform is one step closer to mass adoption by providing scalable infrastructure and speed that met or exceeded what was necessary to transact with digital tokens in real-life scenarios.

In addition, a two-way bridge to trustlessly interoperate with Ethereum. This enables Ethereum users to benefit from fast, cheap and secure transactions on Syscoin, and Syscoin users to leverage the Turing complete contract capabilities and ecosystem of Ethereum, all of which exclude custodians or third-parties.

Every decision we’ve made has been with security in mind. We believe that one of the biggest advantages of Syscoin is that it is merge-mined with Bitcoin.

Rather than expend more energy, Syscoin recycles the same energy spent by Bitcoin miners in order to solve blocks while being secured by the most powerful cryptocurrency mining network available.

With this energy efficiency we were able to reduce the subsidy to miners and increase subsidy to masternodes without raising the overall inflation; see Fig 1 for configuration.

Unlike Dashpay, these masternodes are not what you expect, as they have the specific job of running full nodes.

Fig 1: Masternode setup

Syscoin Platform

Today, Syscoin offers an asset protocol and deterministic validators as an enhancement on top of Bitcoin, as summarized below:

  • UTXO Assets
  • Compliance through Notary
  • Fungible and Non-Fungible tokens (Generic Asset infrastructure named SPT — Syscoin Platform Tokens)
  • Z-DAG for fast probabilistic onchain payments, working alongside payment channel systems like Lightning Networks
  • Deterministic validators (Masternodes) which run as Long-Living Quorums for distributed consensus decisions such as Chain Locks
  • Decentralized Governance, 10% of block subsidy is saved to pay out in a governance mechanism through a network wide vote via masternodes
  • Merged-mined with Bitcoin for shared work alongside Bitcoin miners

Masternode Configuration

With 2400+ masternodes running fullnodes, Z-DAG becomes much more dependable, as does the propagation of blocks and potential forks.

The masternodes are bonded through a loss-less strategy of putting 100000 Syscoin in an output and running full nodes in exchange for block rewards.

A seniority model incentivizes the masternodes to share long-term growth by paying them more for the longer period of service. Half of the transaction fees are also shared between the PoW miners and masternodes to ensure long term alignment once subsidy becomes negligible.

The coins are not locked at any point, and there is no slashing condition if masternodes decide to move their coins, the rewards to those masternodes simply stop.

Sharing Bitcoin’s compact block design, it consumes very little bandwidth to propagate blocks assuming the memory pool of all these nodes is roughly synchronized [2].

The traffic on the network primarily consists of propagating the missing transactions to validate these blocks. Having a baseline for a large number of full-nodes that are paid to be running allows us to create a very secure environment for users.

It proposes higher costs to would-be attackers who either have to attempt a 51% attack of Syscoin (effectively also trying to attack the Bitcoin network), or try to game the mesh network by propagating bad information which is made more difficult by incentivized full-nodes.

The health of a decentralized network consists of the following;

(a) the mining component or consensus to produce blocks, and

(b) the network topology to disseminate information in a timely manner in conditions where adversaries might be lurking.

Other attacks related to race conditions in networking or consensus code are mostly negligible as Syscoin follows a rigorous and thorough continuous development process.

This includes deterministic builds, Fuzz tests, ASAN/MSAN/TSAN, functional/unit tests, multiple clients and adequate code coverage.

Syscoin and Bitcoin protocol code bases are merged daily such that the build/signing/test processes are all identical, allowing us to leverage the massive developer base of Bitcoin.

The quality of code is reflective of taking worst case situations into account. The most critical engineers and IT specialists need confidence that value is secure should they decide to move their business to that infrastructure.

It’s true that there are numerous new ideas, new consensus protocols and mechanisms for achieving synchronization among users in a system through light/full node implementations.

However, in our experience in the blockchain industry over the last 8 years, we understand that it takes years, sometimes generations to bring those functionalities to production level quality useful for commercial applications.

Chain Locks

With a subset of nodes offering sybil resistance through the requirement of bonding 100,000 SYS to become active, plus the upcoming deterministic masternode feature in Syscoin 4.2, we have enabled Chain Locks which attempts to solve a long-standing security problem in Bitcoin [3], where Dashcore was the first project to implement this idea [4] which the industry has since widely accepted as a viable solution [5].

Our implementation is an optimized version of this, in that we do not implement Instant Send or Private Send transactions and thus Syscoin’s Chain Lock implementation is much simpler.

Because of merged-mining functionality with Bitcoin, we believe our chain coupled with Chain Locks becomes the most secure via solving Bitcoin’s most vulnerable attack vector, selfish mining.

These Chain Locks are made part of Long-Living Quorums (LLMQ) which leverage aggregatable Boneh–Lynn–Shacham (BLS) signatures that have the property of being able to combine multiple signers in a Distributed Key Generation (DKG) event to sign on decisions. In this setup, a signature can be signed on a group of parties under threshold constraints without any one of those parties holding the private key associated with that signature. In our case, the signed messages would be a ChainLock Signature (CLSIG) which represent claims on what the block hashes represent of the canonical chain [4].

This model suggests a very efficient threshold signature design was needed to be able to quickly come to consensus across the Masternode layer to decide on chain tips and lock chains preventing selfish mining attacks. See [6] to understand the qualities of BLS signatures in the context of multi-sig use cases.

Ethereum 2.0 design centers around the use of BLS signatures through adding precompile opcodes in the Ethereum Virtual Machine (EVM) for the BLS12–381 curve [7] which Syscoin has adopted.

This curve was first introduced in 2017 by Bowe [8] to the ZCash protocol. Masternodes on Syscoin use this curve and have a BLS key that is associated with each validator. There is the performance comparison to ECDSA (Secp256k1) [9] that shows its usefulness in contrast to what Bitcoin and Syscoin natively use for signature verification.

Blockchain as a Computational Court

A computational court is a way of enforcing code execution on the blockchain’s state. This was first introduced by de la Rouvier [10].

Since the inception of  Syscoin  and  Blockchain Foundry we have subscribed to the idea that the blockchain should be used as a court system rather than a transaction processor.

This debate has stemmed from the block size debate in the Bitcoin community [11]. However, with recent revelations in cryptography surrounding Zero-Knowledge Proofs (ZKP) [12] and particularly Zero-Knowledge Succinct Non-Interactive Argument of Knowledge (zk-STARK) [13], we propose a secure ledger strategy using the Bitcoin protocol as a court (ie, host layer), an EVM or eWASM (ie, operating system layer), computational scaling through ZKP (ie, SDK layer) and business verticals (ie, application layer); see Fig 2

Fig 2: Four-layer tech stack

Scalability and Security

Scalability in blockchain environments is typically measured by Total Transactions per Second (TPS).

This means full trustlessness, decentralization and liveness properties as evidenced by something like Bitcoin.

If trade-offs are made to achieve higher scale it means another property is affected.

A full node is one that creates blocks and/or fully validates every block of transactions.

For the purpose of this discussion, we will refrain on expounding on designs where light-clients are used to give semblance of higher throughput, etc.

However, if two nodes are running the same hardware and doing the same work, the one that provides more TPS performance than the other is considered more scalable. This is not to be confused with throughput which is the measure of output that can be increased by simply adding more hardware resources. Hence, more throughput does not mean more scalable.

Some blockchains require the producers of blocks to run on higher specifications, offering higher throughput but not necessarily more scale.

However, there are projects which employ parallel processing to try to achieve higher scale whilst also enforcing more capable hardware to provide a more efficient overall system [33].

As a logical experiment, the throughput of a system divided by the scalability of the system is what we define as efficiency.

In the following sections, we will outline our proposal for improved efficiency.

Efficiency

The holy grail of blockchain design resides in the ability to have a ledger that can claim to be sublinear while retaining consistency, fault tolerance and full availability (ie, CAP Theorem).

This means there are roughly constant costs for an arbitrary amount of computation performed and being secured by that ledger.

This has always been thought of as impossible and it mostly is unless acceptable trade-offs appear in application designs and they are easy to understand and work around.

Most experts make the assumption that an O(1) ledger is simply impossible and thus design blockchains and force applications to work in certain ways as a result.

We will remove such assumptions and let business processes dictate how they work by giving the ability to achieve O(logk n) for some constant k (ie, polylogarithmic) efficiency with trade-offs.

A polylogarithmic design would give the ability for almost infinite scaling over time for all intents and purposes.

The only bottlenecks would be how fast information can be propagated across the network which would improve over time as telecom infrastructure naturally evolves and increases in both capability and affordability.

Put in context, even Lightning Networks for transactional counts qualifies as a form of sublinear scaling on a transactional basis but not per user, as users must necessarily enter the main chain first before entering a payment channel.

It requires the state of the blockchain to include the users joining the system.

This state (the UTXO balances) is the single biggest factor of efficiency degradation in Bitcoin.

Users need to first start on the main chain and then move into the payment channel system to receive money, meaning that scale is at best O (N) where N is the number of users.

There are some solutions to this problem of state storage on Bitcoin by reducing it via an alternative accumulator strategy to the cost of increased bandwidth [14].

This approach would make the chain state-less, however the validation costs would remain linear to the number of transactions being done. When combined with payment channels, only the costs to get in/out are factored into the validation and this offers an interesting design for payments themselves while providing for on-chain availability.

We consider this as a good path for futuristic scalable payments.

Hence, it is not possible to employ that strategy with general computations. With this design, we are still left with the issue on how to do general computations at higher efficiency.

What we present is the ability to have a polylogarithmic chain at the cost of availability for both payments and general computations where business processes dictate availability policies, and users fully understand these limitations when using such systems.

Users may also be provided the ability to ensure availability for themselves and others at their discretion. This will be expounded upon in the following sections.

State Liveness and State Safety

While many compelling arguments can be made migrating to a state-less design [15], it is not possible to achieve sublinear efficiency without sacrificing some other desired component that we outlined above.

To achieve polylogarithmic efficiency it’s necessary to have a mix of state and stateless nodes working together in harmony on a shared ledger [15].

This should be accomplished in such a way that business processes can dictate direction, and users can choose to pay a little more for security either by using a stateful yet very scalable ledgering mechanism or by paying to ensure their own data availability amortized over the life of that user on such systems.

Presenting the ability for users to make these choices allows us to separate the consensus of such systems and reduce overall complexity.

However, in whatever solution we adopt , we need to ensure that the final implementation allow for both the liveness and safety of that state, which are defined as follows:

State Liveness — Transferring coins in a timely manner

State Safety — Private custody

It is important to adhere to these concepts; if one cannot move one’s coins, then it is as useful as if one burned their coins. Hence, if we had third party custody in place, this would give rise to custodial solutions, and lose decentralized and trustless aspects of the solution, which again is not desired.

The options as described would allow users to decide their state liveliness at their own discretion, while state safety is a required constraint throughout any system design we provide. The doorway to possibilities of sublinear design is opened by giving users the ability to decide.

Avoiding Re-execution of Transactions

In order to scale arbitrarily, independent of the number of transactions — a desired property of increasing throughput — one requires a mechanism to avoid re-executing transactions.

Further, ideally it would be able to batch these transactions together for a two-fold scaling proposition.

There are a few mechanisms in literature that attempted to solve re-execution:

(a) TrueBit; (b) Plasma; and © Arbitrum avoided re-execution.

Unfortunately, they require challenge response systems to ensure security, which leads to intricate attack vectors of unbounded risk/reward scenarios.

Multi-Party Computation (MPC) is a mechanism to have parties act under a threshold to decide on actions such as computational integrity of a smart contract. MPC is used in Syscoin for BLS threshold signatures for Chain Locks and Proof-of-Service in quorums of validators deterministically chosen using Fiat-Shamir heuristics on recent block hashes.

The problem with this approach is that validators may become corrupt, hence need to be wrapped in a consensus system along with DKG and random deterministic selection. This was an interesting topic of discovery for the Syscoin team early-on as a way to potentially scale smart contract execution but was ultimately discarded due to the incentive for risk/reward scenarios to favour attacks as the value of the transactions increases.

Hardware enclaves (eg, Intel SGX through remote attestation) were also of particular interest to the Syscoin team as a way to offload execution and avoid re-execution costs.

However, there are a myriad of attack vectors and censorship concerns on the Intel platform . We also should note that the Antarctica model was interesting but required a firmware update from Intel to support such a feature which raises concerns over censorship long term.

The theme amongst all of these approaches is that although re-execution is avoided the communication complexity is largely still linear with the number of transactions on the main chain. The security and trust models are also different from that of the layer 1 assumptions which was not desired.
Lacking solvent solutions to avoid re-execution and enable sublinear overall complexity, we were led — in the development of Syscoin 4.0 — to build a trust-minimized two-way bridge between Syscoin and the Ethereum mainchain, offloading the concerns around smart contracts to Ethereum.

With the advent of such promising technology as ZKP and the optimizations happening around them, we have re-considered the possibilities and believe this will play an important role in the development of Web 3.0. This mathematical breakthrough led us to re-test our assumptions and options related to our desired design.

ZKP allows us the desired superlinear scaling trait we had been looking to achieve but they also offer other benefits; namely privacy is very easy to introduce and will not add detectable costs and complexities to verification on the mainchain.

With users controlling their own data, the mainchain and systems may be designed such that only balance adjustments are recorded, not transaction sets (we will explain the case with full data availability below). In this scenario there is no advantage for a miner to gain to be able to collude with users to launch attacks on systems such as Decentralize Finance (DeFi) pools and provenance of transactions.

The flexibility has to be there though for application developers that need experiences consistent with those we have today with Bitcoin/Syscoin/Ethereum, and to enable the privacy use-cases without requiring extra work, knowledge or costs.

Fig 3: Host and EVM layer

Validity Proof Systems Overtop Proof-of-Work Systems

Prior to the use of Proof Systems, the only option for “Validity Proofs” in a permissionless system involved naive replay, and as such greatly limited scalability; in essence this replay is what is still done today in Layer-1 blockchain (L1) solutions, with the known penalty to scalability.

Proof Systems offer a very appealing trait known as succinctness: in order to validate a state transition, one needs to only verify a proof, and this is done at a cost that is effectively independent of the size of the state transition (ie, polylogarithmic in the size of the state transition).

For maximal financial security, the amount of value being stored should depend on the amount of security provided on the settlement side of the ledger.

Proof-of-Work offers the highest amount of security guarantees. Our next generation financial systems begin with optimal ledgering security and add proof systems on top for scaling. Block times are not as important in a world where most users and activity are on Layer-2 blockchain (L2) validity proof based systems.

This liberates engineers who are focused on scalability to define blocks better; safe block times plus the maximal amount of data bandwidth that can be safely propagated in a time sensitive manner across full nodes in the network.

In Syscoin there are incentivized full nodes (ie, deterministic masternodes), so again we can maximize the bandwidth of ledgering capabilities while retaining Bitcoin Proof-of-Work (PoW) security through merged-mining.

Quantum Resistance:

Table 1: Estimates of quantum resilience for current cryptosystems (see [20])

As seen in Table 1, hashing with the SHA256 algorithm is regarded to be quantum safe because it requires Grover’s algorithm to crack in the post-quantum world, and at best the quantum computer will offer only 50% reduction in time to break.

On the other hand, where Shor’s algorithm applies, any pair based cryptographic system will be broken in hours.

For L2, we propose to implement ZKP in the SDK Layer (see Fig 2); namely Non-Interactive Zero Knowledge Proofs (NIZKP).

Popular implementations of NIZKP include Zero-Knowledge Succinct Non-interactive ARgument of Knowledge (zk-SNARKS) and Zero-Knowledge Scalable Transparent ARguments of Knowledge (zk-STARKS).

There are some zk-STARK/zk-SNARK friendly cipher’s employed in zkRollup designs such as MiMC and Pederson hashes for which we lack certainty on classical security, yet are hopeful and would offer quantum resistance within ZKPs.

It is important to note that Bitcoin was developed with change addresses in mind exposing the hash of a public key requires a quantum computer to use Grover’s Algorithm in order to attempt stealing that Bitcoin. Each time a Bitcoin Unspent Transaction Output (UTXO) is spent, the public key is exposed and a new change address — which does not expose the public key — is used as change.

With this in mind, any scalable L2 solution should be quantum resistant because otherwise we undermine Bitcoin design as the gold standard of security.

Fig 4: zkSync Rollup design

A Design Proposal for Web 3.0

The following describes the 4-layers (see Fig 2) of Syscoin’s proposed tech stack for Web 3.0:

[Host Layer] Bitcoin’s design is the gold standard for security and decentralization.

Proof-of-work and Nakamoto Consensus settlement security are widely regarded by academics as the most hardened solution for ledgering value.

It’s possible this may change, however it’s also arguable that the intricate design encompassing Game Theory, Economics, risk reward ratios for attack, and the minimal amounts of compromising attack vectors is likely not to change for the foreseeable future.

UTXO’s (and payments with them) are more efficient than account-based or EVM-based. That said, Bitcoin itself suffers from not being expressive enough to build abstraction for general computation.

[Operating System Layer]

EVM/eWASM is the gold standard for general computation because of its wide adoption in the community.

Anyone building smart contracts are likely using this model or will continue to use it as the standard for autonomous general computation with consensus.

[SDK Layer]

Zero-knowledge proofs are the gold standard for generalized computation scaling for blockchain applications. They enable one-time execution via a prover and enable aggregate proof checking instead of re-execution of complex transactions.

zk-STARKs or zk-SNARKs using collision resistant hash functions that work with only weak cryptographic assumptions and therefore are quantum safe.

At the moment generalized smart contracts are not there yet but we are quickly approaching the day (eg, Cairo, Zinc) when there will be abstractions made to have most Solidity code trans-compile into a native zero-knowledge aware compiler similar to how .NET runtime and C# allows an abstraction on top of C/C++ as an interpretive layer on top

[Application Layer]

Verticals or applications applying the above SDK to define business goals.

Surprisingly, these ideals represent a design that is not shared with any other project in the industry, including Bitcoin or Ethereum.

We feel these ideals, fashioned together in a singular protocol, could possibly present a grand vision for a “World Computer” blockchain infrastructure.

Syscoin has already implemented Geth + Syscoin nodes in one application instance already (ie, release 4.2), we foresee that it will not prove too challenging to have them cooperate on a consensus basis working together to form a dual chain secured by Syscoin’s PoW.

Fig 5: Proposed design

Fig 5 describes a system where nodes are running two sets of software processes, the Syscoin chain protocol and an EVM/eWASM chain protocol which are kept in sync through putting the EVM tip hash into the Syscoin block. Both have their own individual mempools and effectively the Ethereum contracts, tools and processes can directly integrate as is into the EVM chain as it stands.

Note that the two chains are processes running on the same computer together. Thus a SYS NODE and EVM NODE would be operating together on one machine instance (ie, Masternode) with ability to communicate with each other directly through Interprocess Communication (IPC).

The intersection between the two processes happens in three points:

Miner of the EVM chain collects the latest block hash and places it into the Syscoin block.

When validating Syscoin blocks, nodes confirm the validity of the EVM tip by consulting the EVM chain software locally.

Fees for the EVM chain are to be paid in SYS. We need an asset representing SYS on the EVM chain, which will be SYSX.

We will enable this through a similar working concept that we’ve already established (SysEthereum Bridge).

We may also enable pre-compiles on the EVM chain side to extract Syscoin block hashes and merkle roots to confirm validity of SYS to SYSX burn transactions.

This design separates concerns by not complicating the PoW chain with EVM execution information, keeping the processes separate yet operating within the same node.

To further delineate point 1 (see above), a miner would mine both chains. With Syscoin being merged-mined, the work spent on Bitcoin would be shared to create a Syscoin block that includes the EVM chain within it as a ledgering event representing the latest smart contract execution state (composed of Chain Hash, State Root, Receipt Root, and Transaction Trie Root).

Since the EVM chain has no consensus attached, technically a block can be created at any point in time. Creation of Syscoin and EVM blocks will be near simultaneous, and occur every one minute on average.

Fig 6: Merge mining on Syscoin

As seen in Fig 6, work done on BTC is reused to create SYS blocks through the  merged-mining specification. Concurrently, the miner will execute smart contracts in the memory pool of the node running the EVM chain. Once a chain hash has been established post-execution, it will be put into the coinbase of the Syscoin block and published to the network. Upon receiving these blocks, every node would verify that the EVM chain which they would locally execute (ie, similar to the miner) matches the state described by the Syscoin block.

Technically, one would want to ensure both the latest and previous EVM block hashes inside of their respective Syscoin blocks are valid.

The block->evmblock == evmblock && block->prev == evmblock->prev is all that is needed to link the chains together with work done by Bitcoin which is propagated to Syscoin through AUXPOW and can serve as a secure ledgering mechanism for the EVM chain.

Since (a) we may use eWASM; (b) there are paid full nodes running on the network; and © the mining costs are shared with Bitcoin miners, we should be able to safely increase the amount of bandwidth available in the EVM chain while remaining secure from large uncle orphan rates.

There has been much discussion as to what the safe block size should be on Ethereum. Gas limits are increasing as optimizations are made on the Ethereum network.

However, since this network would be ledgered by the Syscoin chain through PoW, there would be no concern for uncle orphaning of blocks since the blocks must adhere to the policy set inside of the Syscoin block. We should therefore be able to increase bandwidth significantly and parameterize for a system that will scale globally yet still be centered around L2 rollup designs.

A very important distinction here is that the design of Ethereum 2.0 centers around a Beacon chain and sharding served by a Casper consensus algorithm. The needs of the algorithm require a set of finality guarantees necessitating a move towards Proof-of-Stake (PoS).1

This has large security implications for which we may not have formal analysis for a long time, however we do know it comes with big risk.

We offer similar levels of scalability on a network while retaining Nakamoto Consensus security. The simpler design which has been market tested and academically verified to work would lead to a more efficient system as a whole with less unknown and undocumented attack vectors.

The only research that would need to be made therefore is on the optimal parameterization of the gas limit taking into account an L2 centric system but also a safe number of users we expect to be able to serve before fee market mechanisms begin to regulate the barrier of entry for these users.

This proposed system should be scalable enough to serve the needs of global generalized computation while sticking to the core fundamentals set forth in the design ideals above. Our upcoming whitepaper will have more analysis on these numbers but we include some theoretical scaling metrics at the end of this article.

Optimistic vs ZkRollup

ZKP are excellent for complex calculations above and beyond simple balance transfers. For payments, we feel UTXO payment channels combined with something like Z-DAG is an optimal solution.

However, we are left with rollup solutions for generalized computation involving more complex calculations requiring consensus.

Whatever solution we adopt has to be secured by L1 consensus that is considered decentralized and secure, which we achieve via merged-mining with Bitcoin.

There are two types of rollup solutions today:

(a) Optimistic roll ups (OR); and (b) zkRollups; which offer trade-offs.

Consensus about which chain or network you’re on is a really hard problem that is solved for us by Nakamoto consensus. We build on that secure longest chain rule (supplemented by Chain Locks to prevent selfish mining) to give us the world-view of the rollup states. The executions themselves can be done once by a market of provers, never to be re-executed, only verified, meaning it becomes an almost constant cost on an arbitrarily large number of executions batched together. With OR you have the same world-view but the world-view is editable without verifying executions. The role of determining the validity of that world-view is delegated to someone watching who provides guarantees through crypto-economics. Zero-knowledge proofs remove crypto-economics on execution guarantees and replace them with cryptography.

See [26] to see  between fraud proofs (optimistic) vs validity proofs (zk)

Key takeaways from this article are as follows

  • Eliminate a nasty tail risk: theft of funds from OR via intricate yet viable attack vectors;
  • Reduce withdrawal times from 1–2 weeks to a few minutes;
  • Enable fast tx confirmations and exits in practically unlimited volumes;
  • Introduce privacy by default.

One point missing is interoperability. A generalized form of cross-chain bridging can be seen in Chain A locking tokens based on a preimage commitment by Chain B to create a zero-knowledge proof, followed by verification of that proof as the basis for manifesting equivalence on Chain B. Any blockchain with the functionality to verify these proofs could participate in the ecosystem.

Our vision here is described using a zkRollup centric world-view, yet it can be replaced with other technologies should they be able to serve the same purpose. As an infrastructure we are not enforcing one or the other; developers can build on what they feel best suits their needs. We believe we are close to achieving this, and that the technology is nearing the point of being ready for the vision set forth in this article.

Decentralized Cost Model

Decentralized cost models lead to exponential efficiency gains in economies of scale. We set forth a more efficient design paradigm for execution models reflective of user intent. This design uses the UTXO model to reflect simple state transitions and a ZKP system for complex computations leading to state transitions. This leads to better scalability for a system by allowing people to actively make their trade-off within the same ecosystem, driven by the same miners securing that ecosystem backed by Bitcoin itself.

Furthermore, a decentralized cost model contributes to scalability in that ZKP gates can generalize complex computation better than fee-market resources like gas or the CPU/memory markets of EOS, etc.

This leads to better scalability for a system by allowing people to actively make their trade-off within the same ecosystem, driven by the same miners securing that ecosystem backed by Bitcoin itself.

Furthermore, a decentralized cost model contributes to scalability in that ZKP gates can generalize complex computation better than fee-market resources like gas or the CPU/memory markets of EOS, etc. This leads to more deterministic and efficient consumption of resources maximizing efficiency in calculations, and gives opportunity for those to scale up or down based on economic incentives without creating monopolistic opportunities unlike ASIC mining.

In other words, the cost is dictated by what the market can offer, via the cost of compute power (as dictated by Moore’s law), rather than the constrained costs of doing business on the blockchain itself.

This model could let the computing market dictate the price for Gas instead of being managed by miners of the blockchain. The miners would essentially only dictate the costs of the verification of these proofs when they enter the chain rather than the executions themselves.

 happening with ZKP and with a decentralized cost model it will be much easier to understand costs of running prover services as well as know how the costs scale based on the number of users and parameters of systems that businesses would like to employ. All things considered, it will be easier to make accurate decisions on data availability policies and the consensus systems needed to keep the system censorship resistant and secure.

Rollups will be friends, that is, users of one rollup system doing X TPS and users of another doing Y TPS, with the same trust model, will in effect get us to global rates of X*Y (where X is TPS of the sidechains/rollups and Y is the number of sidechains and rollups that exist). X is fairly static in that the execution models of rollups do not change drastically (and if they do, the majority of those rollup or sidechain designs end up switching to the most efficient design for execution over time).

State-less Layer 1 Design

The single biggest limiting factor of throughput in blockchains is  and access to the global state.

More specifically, in Bitcoin it is the UTXO set, and in Ethereum it is the Account Storage and World State tries. State lookups typically require SSD in Ethereum full nodes because real-time processing of transactions of block arrivals are critical to reaching consensus, this is especially the case for newly arriving blocks (ie, every 10–15 seconds).

As state and storage costs rise, the number of full verifying nodes decreases due to the resource consumption of fully validating nodes and providing timely responses to peers. Consequently, network health suffers due to the risks of centralization of consensus amongst the subset peers running full nodes.

State-less designs are an obvious preference to solve problems using alternative mechanisms to validate the chain without requiring continuous updates to the global state.

In a rollup, smart contracts on L1 do not access the global state unless entering or exiting a rollup. Therefore smart contracts that provide full data availability on-chain (ie, zkRollup), would only require state updates to the local set of users within that L2. Under designs where data availability is kept off-chain, there is no state update on L1, unless entering and exiting.

Therefore, it classifies as purely state-less, whereas in zkRollup mode we can consider this partially state-less. Since these L1 contracts are state-less to the global state, nodes on the network can parallelize verification of any executions to the contracts which do not involve entering or exiting. This is in addition to the organic and natural parallel executions of transactions that are composing these rollup aggregated transactions posted on L1.

State-less layer 1 designs also allow for parallelizable smart contract execution verification. The parallelization of smart contracts running on L1 in the EVM model is a recent topic of research that  which involves defining “intent” for the execution of a contract (because nodes do not know ahead of time what the smart contract execution will entail in terms of accessing global state).

Adding in the intent of a transaction as supplied as part of the commitment of that transaction would allow nodes to reject if the execution of that contract did not correspond with the intent, possibly costing the user fees for invalid commitments.

Although these designs may be flexible, they come at the cost of additional complexity through sorting, filtering and general logic that may be susceptible to intricate attacks.

In our case, the transaction can include a field that is understood by the EVM to denote if it is intending to use global state in any way (for rollups typically this would be false) then we can simply reject any access to global states for those specific types of executions.

This would allow nodes to execute these specific types of transactions in parallel knowing that no global state is allowed to access executions. If a transaction is rejected due to incorrectly setting this field the fees are still spent to prevent users from purposefully setting this field incorrectly.

Related Works

The following organizations offer various open source third party L2 scaling solutions:

Starkware is built using a general purpose language (Cairo) with Solidity (EVM) in mind, as is Matter labs with the (Zinc) language. Hermez developed custom circuits tailor-suited to fast transactions and Decentralized Exchange (DEX) like capability. These will be able to directly integrate into Syscoin without modification.

As such, the optimizations and improvements they make should directly be portable to Syscoin, hence becoming partners to our ecosystem.

Aleo uses Zero knowledge EXEcution (Zexe) for zkSNARK proof creation through circuits created from R1CS constraints. The interesting thing about Aleo is that there is a ledger itself that is purpose-built to only verify these Zexe proofs for privacy preserving transactability. The consensus is PoW, while the proof system involves optimizing over the ability to calculate the verifications of these proofs efficiently.

The more efficient these miners become at verifying these proofs, the faster they are able to mine and thus the system provides sybil resistance through providing resources to verify Zexe proofs as a service in exchange for block creation.

However, these proof creations can be done in parallel based on the business logic for the systems the developers need to create. There is no direct need for on-chain custom verification as these can be done in an EVM contract, similar to what Cairo Generic Proving Service (GPS) verifier and Zinc Verification do.

The goal of Aleo is to incentivize miners to create specialized hardware to more efficiently mine blocks with verification proofs.

However, provers can also do this as we have seen with Matter Labs’ recent release of  [27]. It is a desirable property to use PoW to achieve “world-view” consensus in Aleo; however they focus on private transactions. They are typically not batched and employ a recursive outer proof to guarantee execution of an inner proof where the outer proof is sent to the blockchain to be verified. This proof is a limited 2-step recursion, consequently batching of arbitrary amounts of transactions is not supported.

However, as a result the cost of proof verification is relatively constant with a trade-off of limiting the recursion depth. Aleo is not meant to be a scalable aggregator of transactions, but mainly oriented towards privacy in their zk-SNARK constructions using Zexe.

Commercial Interests

Commercial enterprises may start to create proprietary prover technologies where costs will be lower than market in an attempt to create an advantage for user adoption. This design is made possible since the code for the prover is not required for the verifier to ensure that executions are correct. The proof is succinct whether or not the code to make the proof is available.

While the barrier of entry is low in this industry, we’ve seen the open source model and its communities optimize hardware and software and undergo academic peer review using strategies that outpace private funded corporations.

That is plausible to play out over the long term. However, an organic market will likely form on its own, forging its own path leading to mass adoption through capitalist forces.

The point here is that the privately funded vs open source nature of proving services does not change the mechanism of secure and scalable executions of calculations that are eventually rooted to decentralized and open ledgers secured by Bitcoin.

The utmost interesting propositions are the verticals that become possible by allowing infrastructure that is parameterized to scale into those economies where they are needed most, and where trust, security and auditability of value are concerns.

Smart cities, IoT, AI and Digital sovereignty are large markets that intersect with blockchain as a security blanket.

Although ZKP are tremendously useful on their own, applying them to consensus systems for smart contract executions drive them to another level due to the autonomous nature of “code-is-law” and provable deterministic state of logic. We believe a large majority of the next generation economy will depend on many of the ideas presented here.

 is working with commercial and enterprise adopters of blockchain technology. Our direct interaction with clients combined with our many collective years of experience in this field are reflected in this design.

Functional Overview

Fig 7: High-level description

For scalable simple payments, one can leverage our Syscoin Platform Token (SPT) asset infrastructure and payment channels to transact at scale.

Unique characteristics of SPTs include a generalized 8 byte field for the asset ID which is split between the upper and lower 4 bytes; the upper 4 are issued and definable (ie, NFT use cases) and lower 4 are deterministic. This enables the ability to have a generalized asset model supporting both Non-fungible Tokens (NFT) and Fungible Tokens (FT) without much extra cost at the consensus layers. 1 extra byte is used for all tokens at best case and 5 extra bytes are used for NFT at worst case.

See [28] for more information on .

This model promotes multiple assets to be used as input and consequently as outputs, suggesting that atomic swaps between different assets are possible within 1 transaction. This has some desirable implications when using payment channels for use cases such as paying in one currency when merchants receive another atomically.

A multi-asset payment channel is a component that is desired so users are not constrained to single tokens within a network. Composability of assets as well as composability across systems (such as users from one L2 to another) is a core fundamental to UX and convenience that needs to be built into our next generation blockchain components that we believe will enable mass adoption.

The Connext box shows how potentially you can  as described in [29]. This would promote seamless cross-chain L2 communication without the high gas fees. Since these L2’s are operating under an EVM/eWASM model, there are many ways to enable this cross-communication.

An EVM layer will support general smart contracts compatible with existing Ethereum infrastructure and L2 rollups will enable massive scale. The different types of zkRollups will allow businesses and rollup providers to offer ability for custom fee markets (ie, pay for fees in tokens other than base layer token SYS).

In addition, it will remove costs and thus improve scale of systems by offering custom data availability consensus modules. This design discussed here shares similarities to the  where a smart contract would sign off on data availability checks that would get put into the ZKP as part of the validity of a zkBlock which goes on chain.

The overall idea of the zkPorter design is that the zkRollup system would be called a “shard”, and each shard would have a type either operating in “zkRollup” mode or operating in “normal” mode.

Taken from the zkPorter article the essence of it is:

If a shard type is zkRollup, then any transaction that modifies an account in this shard must contain the changes in the state that must be published as L1 calldata (same as a zkRollup).

Any transaction that modifies accounts in at least two different shards must be executed in zkRollup mode.

All other transactions that operate exclusively on the accounts of a specific shard can be executed in normal shard mode (we will call them shard transactions). If a block contains some shard transactions for a shard S, then the following rules must be observed:

  1. The root hash of the subtree of the shard S must be published once, as calldata on L1. This guarantees that users of all other shards will be able to reconstruct their part of the state.
  2. The smart contract of the data availability policy of this shard must be invoked to enforce additional requirements (e.g. verify the signature of the majority of the shard consensus participants).

This concludes that shards can define different consensus modules for data availability (censorship resistance mechanisms) via separating concerns around ledgering the world-view of the state (ie, ZKP that is put on L1 and the data that represents the state. Doing so would allow shards to increase scale, offload costs of data availability to consensus participants.

A few note-worthy examples of consensus for data availability are:

  1. Non-committee, non fraud proof based consensus for data availability checks. No ⅔ online assumption; see  [30].
  2. Sublinear block validation of ZKP system. Use something like  as a data availability proof engine and majority consensus; see  [31].
  3. Use a combination of above, as well as masternode quorum signatures for any of the available quorums to sign a message committing to data availability checks as well as data validity. Using masternodes can provide a deterministic set of nodes to validate decisions as a service. The data can be stored elsewhere accessible to the quorums as they reach consensus that it is indeed valid and available.

Give Me The Goods

You may be wondering what a system like this can offer in terms of scale …

Simple payments: since payment channels work with UTXO’s and also benefit from on-chain scaling via Z-DAG, 16MB blocks (with segwit weight) assumed, we will see somewhere around 8MB-12MB effectively per minute (per block).

We foresee that is sufficient to serve 7 Billion people who may enter and exit the once a year (ie, 2 transactions on chain per person per year) for a total of 14 Billion transactions.

Let’s conservatively assume 8MB blocks and 300 bytes per transaction. Once on a payment channel, the number of transactions is not limited to on-chain bandwidth, but to network related latencies and bandwidth costs. Therefore, we will conclude that our payment scalability will be able to serve billions of people doing 2 on-chain transactions per year which is arguably realistic based on the way we envision payments to unfold; whether that is an L2 or payment channel network that will hold users to pay through instant transaction mechanisms.

On-chain, we have some  [1]; in those cases someone needs to transact for point-of-sale using the Syscoin chain. The solution for payments ends up looking like a hybrid mechanism of on-chain (Z-DAG) and off-chain (ie, payment channel) style payments.

Complex transactions such as smart contracts using zkRollups require a small amount of time to verify each proof. In this case, we assume that we will host data off-chain while using an off-chain consensus mechanism to ensure data availability for censorship resistance; so the only thing that goes on the chain are validity proofs. We will assume that we will assign 16MB blocks for the EVM chain per minute.

A proof size will be about 300kB for about 300k transactions batched together which will take about 60–80ms to verify and roughly 5 to 10 minutes to create such proofs.

These are the   using zk-STARKs which present quantum resistance and no trusted setup.

After speaking with Eli Ben-Sasson, we were made aware that proving and verifications metrics are already developed compared to what is currently presented by Starkware [34].

Hence, zk-SNARKs offer even smaller proofs and verification times at the expense of trusted setups and stronger cryptography assumptions (not post-quantum safe).

We foresee that these numbers will improve over time as the cryptography improves, but current estimates suggest a rough theoretical capacity of around 1 Million TPS.

Starkware was able to process 300k transactions over 8 blocks with a total cost of 94.5M gas; final throughput was 3000 TPS (see Reddit bake-off estimates). As a result, or the following calculations, let’s assume one batch-run to be 300k transactions.

Ethereum can process ~200kB of data per minute, with a cost limit of 50M gas per minute. Therefore, considering the Starkware benchmark test, and assuming a block interval of 13 seconds, we would achieve ~ 3000 TPS (ie, 300 k transactions per batch-run / (8 blocks per batch-run * 13 seconds per block))

It is estimated that Syscoin will be able to process ~16MB of data per minute on the EVM layer (ie, SYSX in Fig 3), which is ~80x gain over Ethereum; thus a cost limit of 4B gas (ie, 80*50M) per minute.

Therefore, if the Starkware benchmark test was run on Syscoin, it is estimated that Syscoin could run the equivalent of 42 batch-runs per minute (ie, 4B gas per minute / 94.5 M gas per batch-run).

That would result in an equivalent of 210 k TPS (ie, 42 batch-runs per minute * 300 k transactions per batch-run / 60 seconds per minute).

If we were to consider using Validum on the Syscoin EVM layer, we estimate that we could achieve 800 batch-runs per minute (ie, 4B gas per minute / 5 M gas per batch-run). That would equate to an equivalent of 4M TPS (ie, 800 batch-runs per minute * 300 k transactions per batch-run / 60 seconds per minute).

Table 2: Gas costs and Total throughput

* Because all transactions are on-chain, which would include state lookups and modifications, it would likely result in a smaller total throughput depending on the node. This would be on average somewhere between 50–150 TPS total due to the state lookup bottlenecks, which are not an issue in a rollup design and can be done in a state-less way on-chain (meaning the throughput can instead be bounded by computational verification of the ZKPs)

**Rollups post the transitions on-chain and Validium does not, but note that the transitions on chain are account transitions and not transactions and so if some accounts interact within the same batch it will be just those account transitions recorded to the chain regardless of how many actual transactions are done between them.This is the minimum TPS with full layer 1 decentralized security. The amortized cost per Tx thus drops as accounts are reused within the This is the minimum TPS with full layer 1 decentralized security. The amortized cost per Tx thus drops as accounts are reused within the batch and the total TPS would subsequently rise.

Optimizations to the verification process are likely and would be required to get to those numbers, but the bandwidth would allow for such scale should those optimizations come to fruition.

For example 800 zk-STARK verifications at roughly 80ms per zk-STARK would take around 64 seconds, however these proofs can be verified in parallel so with a 32-core machine. It would take ~2–3 seconds total spent on these proofs, and likely decrease further with optimizations (note that TPS includes total account adjustments).

Because of the higher throughput capabilities of baseline EVM, we may look to  [32] to thwart DOS attacks.

The aforementioned calculations demonstrate the full State Safety of the mainchain secured by Bitcoin, and no asynchronous network assumptions which make theoretical calculations impractical in many other claims of blockchain throughput due to execution model bottlenecks.

These results were extrapolated based on real results with constant overhead added that becomes negligible with optimizations. It is imperative to note that transactions in this strategy are not re-executable; there is little to no complexity in this model other than verifying succinct proofs. The proof creation strategy is parallelized organically using this model. The verifications on the main chain can also be parallelized as they are executed on separate shards or rollup networks. Dual parallel execution and verification gives exponentially more scalability than other architectures.

Additionally, privacy can be built into these models at minimal to no extra cost, depending on the business model. Lastly, we suggest these are sustainable throughput calculations and not burst capacity numbers which would be much higher (albeit with a marginally higher fee based on fee markets).

For example Ethereum is operating at 15 TPS but there are around 150k transactions pending, and the average cost is about 200 gWei currently. The fee rate is based on the calculation that it takes around 10000 seconds to clear, assuming this many transactions, no new transactions, and there is demand to settle earlier.

Extrapolating on 4M TPS the ratio would become 40B transactions pending with 4M TPS to achieve the same fee rate on Ethereum today assuming the memory pool is big enough on nodes to support that many pending transactions.

Since masternodes on Syscoin are paid to provide uptime, we can expect network bandwidth to scale up naturally to support higher throughput as demand for transaction settlement increases.

Today, the ability to transact at a much higher rate using the same hardware provides the ability for a greater scale than the state-of-the-art in blockchain design without the added desired caveat of avoiding asynchronous network assumptions.

We believe this proposed design will become the new state-of-the-art blockchain, which is made viable due to its security, flexibility and parallelizable computational capacity.

In regards to uncle rates with higher block sizes, keep in mind we make uncle rates and re-organizations in general negligible through the use of the PoW chain mining Syscoin along with Chain Locks. We provide intuition that block sizes can be increased substantially without affecting network health.

Furthermore, the gas limits can be adjusted by miners up to 0.1% from the previous block and so a natural equilibrium can form where even if more than 4B gas is required it can be established based on demand and how well the network behaves with such increases.

There is a lot to unpack with such statements and so we will cover this in a separate technical post as it is out-of-scope for this discussion.

Blockchain Foundry

One of the main reasons for a profit company is to take advantage of some of the aforementioned verticals which we expect to underpin the economies of tomorrow with infrastructure similar to what is presented here.

Since the company’s beginning in 2016, we have spent the majority of our existence designing architecture parameterized to global financial markets.

Breakthroughs in cryptography and consensus designs as described here lead us to formalize these designs to apply to market verticals, formulating new applications and solutions that would not have been possible before.

Specifically, , we believe these ideas can be IP protected without requiring privatization of the entire tech stack. These value-added ideas that will use existing open-source tech stacks enabling a massive network effect of value through incentivization of commercial and enterprise adoption.

These new ideas, innovations and proprietary production quality solutions could steer in a new wave of  for civilization.


References

[1] J. Sidhu, E, Scott, and A. Gabriel, Z-DAG: An interactive DAG protocol for real-time crypto payments with Nakamoto consensus security parameters, Blockchain Foundry Inc, Feb. 2018. Accessed on: Feb 2021. [Online]. Available: 

[2] Bitcoin Core FAQ, Compact Blocks FAQ Accessed on: Feb 2021. [Online]. Available: 

[3] I. Eyal and E. G. Sirer, Majority is not enough: Bitcoin mining is vulnerableProceedings of International Conference on Financial Cryptography and Data Security, pp. 436–454, 2014.

[4] A. Block, Mitigating 51% attacks with LLMQ-based ChainLocks. Accessed on: Feb 2021. [Online], Nov 2018. Available: 

[5] J. Valenzuela, Andreas Antonopoulos Calls Dash ChainLocks “a Smart Way of” Preventing 51% Attacks. Aug 22, 2019. Accessed on: Feb 2021. [Online]. Available: 

[6] D. Boneh, M. Drijvers, and G. Neven, BLS Multi-Signatures With Public-Key Aggregation, Mar 2018. Accessed on: Feb 2021. [Online]. Available: 

[7] J. Drake. Pragmatic signature aggregation with BLS, May 2018. Accessed on: Feb 2021. [Online]. Available: 

[8] S. Bowe, BLS12–381: New zk-SNARK Elliptic Curve Construction, Mar 2017. Accessed on: Feb 2021. [Online]. Available: 

[9] A. Block, BLS: Is it really that slow?, Jul 2018. Accessed on: Feb 2021. [Online]. Available: 

[10] S. de la Rouvier. Interplanetary Linked Computing: Separating Merkle Computing from Blockchain Computational Courts, Jan 2017. Accessed on: Feb 2021. [Online]. Available: 

[11] Anonymous Kid, Why the fuck did Satoshi implement the 1 MB blocksize limit? [Online forum comment], Jan 2018, Accessed on: Feb 2021. [Online]. Available: 

[12] Zero-Knowledge Proofs What are they, how do they work, and are they fast yet? Accessed on: Feb 2021. [Online]. Available: 

[13] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, Scalable, transparent, and post-quantum secure computational integrity, IACR Cryptol, 2018, pp 46

[14] Dryja, T, Utreexo: A dynamic hash-based accumulator optimized for the bitcoin UTXO set, IACR Cryptol. ePrint Arch., 2019, p. 611.

[15] G.I. Hotchkiss, The 1.x Files: The State of Stateless Ethereum, Dec 2019. Accessed on: Feb 2021. [Online]. Available: 

[16] S. Bowe, A. Chiesa, M. Green, I. Miers, P. Mishra, H. Wu: Zexe: Enabling decentralized private computation. Cryptology ePrint Archive, Report 2018/962 (2018). Accessed on: Feb 2021. [Online]. Available: 

[17] A. Nilsson, P.N. Bideh, J. Brorsson, A survey of published attacks on Intel SGX. 2020, arXiv:2006.13598

[18] C. Nelson, Zero-Knowledge Proofs: Privacy-Preserving Digital Identity, Oct 2018. Feb 2021. Accessed on: [Online]. Available: 

[19] D. Boneh, Discrete Log based Zero-Knowledge Proofs, Apr 2019, Accessed on: Feb 2021 [Online]. Available: 

[20] Quantum Computing’s Implications for Cryptography (Chapter 4), National Academies of Sciences, Engineering, and Medicine: Quantum Computing: Progress and Prospects. The National Academies Press, Washington, DC, 2018.

[21] S. Naihin, Goodbye Bitcoin… Hello Quantum, Apr 2019, Accessed on: Feb 2021 [Online]. 

[22] L.T. do Nascimento, S. Kumari, and V. Ganesan, Zero Knowledge Proofs Applied to Auctions, May 2019, Accessed on: Feb 2021 [Online]. Available: 

[23] G., Proof of Stake Versus Proof of Work. Technical Report, BitFury Group, 2015. Accessed on: Feb 2021. [Online]. Available: 

[24] V. Buterin and V. Griffith, Casper the Friendly Finality Gadget. CoRR, Vol. abs/1710.09437, 2017. arxiv: 1710.09437, 

[25] M. Neuder, D.J. Moroz, R. Rao, and D.C. Parkes, Low-cost attacks on Ethereum 2.0 by sub-1/3 stakeholders, 2021. arXiv:2102.02247, 

[26] Starkware, Validity Proofs vs. Fraud Proofs, Jan 2019, Accessed on: Feb 2021, [Online]. Available: 

[27] A. Gluchowski, World’s first practical hardware for zero-knowledge proofs acceleration, Jul 2020, Accessed on: Feb 2021 [Online]. Available: 

[28] Introducing an NFT Platform Like No Other, Accessed on: Feb 2021. [Online]. Available: 

[29] A. Bhuptani, Vector 0.1.0 Mainnet Release, The beginning of a multi-chain Ethereum ecosystem, Jan 2021, Accessed on: Feb 2021. [Online]. Available: 

[30] V. Buterin, With fraud-proof-free data availability proofs, we can have scalable data chains without committees, Jan 2020, Accessed on: Feb 2021. [Online]. Available: 

[31] M. Al-Bassam, A data availability blockchain with sub-linear full block validation, Jan 2020, Accessed on: Feb 2021. [Online]. Available: 

[32] T. Chen, X. Li, Y. Wang, J. Chen, Z Li, X. Luo, M. H. Au, and X. Zhang. An adaptive gas cost mechanism for Ethereum to defend against under-priced DoS attacks. Proceedings of Information Security Practice and Experience — 13th International Conference ISPEC, 2017

[33] Y. Sompolinsky, and A. Zohar, Secure High-rate Transaction Processing in Bitcoin, Proc. 19th Int. Conf. Financial Cryptogr, Data Secur. (FC’20), Jan 2015, pp. 507–527

[34] Starkware Team, Rescue STARK Documentation — Version 1.0, Jul 2020

Shared with 💚 by Free Spirit

✌ & 💚

BitHouse with 💚

Bitcoin/Crypto Wallet types

Choose the wallet that better suits You

You may choose a wallet based on what best suits your needs. we will explore various
types of wallets and clients:

• Web
• Desktop
• Mobile
• Hardware
• Paper (Not Secure Anymore)

Wallets and clients can be chosen based on a number of criteria:

  • How much bitcoin is being used / stored
  • IT proficiency (beginner vs. expert)
  • Type of device
  • Occasional use vs. everyday use
  • Security and privacy concerns
  • Cryptocurrencies being used
  • Type and complexity of transactions

Find the wallet that’s right for you:


https://bitcoin.org/en/choose-your-wallet

Made with 💚 by Free Spirit

✌ & 💚

BitHouse with 💚

Bitcoin – The People’s Money

Power to the People
Not by Force but by Free Will
The Choice is always Yours
Arise…
Choose Wisely…
People do not understand the Monetary System
Privacy is not Secrecy.
Veritas
Bitcoin cannot be ShutDown
Power of the long tail
CypherPunks Write Code
bitcoin Genesis Block

Made with 💚 by Free Spirit

✌ & 💚

BitHouse with 💚

Why bitcoin matters

Why Bitcoin Matters ?


“A mysterious new technology emerges, seemingly out of nowhere, but actually the result of two decades of intense
research and development by nearly anonymous researchers.

Political idealists project visions of liberation and revolution onto it; establishment elites heap contempt and scorn on it.

On the other hand, technologists – nerds – are transfixed by it.

They see within it enormous potential and spend their nights and weekends tinkering with it.

Eventually mainstream products, companies and industries emerge to commercialize it; its effects become profound; and later, many people

wonder why its powerful promise wasn’t more obvious from the start.

What technology am I talking about?

Personal computers in 1975, the Internet in 1993, and – I believe – Bitcoin in 2014….

The practical consequence of solving this problem is that Bitcoin gives us, for the first time, a way for one Internet user to transfer a unique piece of digital property to another Internet user, such that the transfer is guaranteed to be safe and secure, everyone knows that the transfer has taken place, and nobody can challenge the legitimacy of the transfer.

The consequences of this breakthrough are hard to overstate.

What kinds of digital property might be transferred in this way?

Think about digital signatures, digital contracts, digital keys (to physical locks, or to online lockers), digital ownership of physical assets such as cars and houses, digital stocks and bonds …

and digital money”.

– Marc Andreessen, Founder of Netscape & well-known venture capitalist, 2014

Marc Lowell Andreessen

(/ænˈdriːsən/ann-DREE-sən;

born July 9, 1971) is an American entrepreneurinvestor, and software engineer.

He is the co-author of Mosaic, the first widely used web browser; co-founder of Netscape; and co-founder and general partner of Silicon Valleyventure capital firm Andreessen Horowitz.

He co-founded and later sold the software company Opsware to Hewlett-Packard.

Andreessen is also a co-founder of Ning, a company that provides a platform for social networking websites.

He sits on the board of directors of Meta Platforms.

Andreessen was one of six inductees in the World Wide Web Hall of Fame announced at the First International Conference on the World-Wide Web in 1994.

Shared with 💚 by Free Spirit

✌ & 💚

BitHouse with 💚

Crypto Terminology

Crypto Terminology


Glossary of Terms


Bags

Cryptoassets being held, generally as longer-term plays; sometimes used self-deprecatingly for soft or losing positions one should close, but can’t for whatever reason. “Too bad none of my alt bags saw the moon that I did today. #cryptoeclipse”

Bitcoin Maximalists

The truest believers in bitcoin’s original mission and design, often paired with a disdain for altcoins.

Block

Blocks are found in the Bitcoin block chain. Blocks connect all transactions together.

Transactions are combined into single blocks and are verified every ten minutes through mining.

Each subsequent block strengthens the verification of the previous blocks, making it impossible to double spend bitcoin transactions (see double spend below).

BIP

Bitcoin Improvement Proposal or BIP, is a technical design document providing information to the bitcoin community, or describing a new feature for bitcoin or its processes or environment which affect the Bitcoin protocol.

New features, suggestions, and design changes to the protocol should be submitted as a BIP.

The BIP author is responsible for building consensus within the community and documenting dissenting opinions.

Black Swans

A black swan is an event or occurrence that deviates beyond what is normally expected of a situation and is extremely difficult to predict.

Black swan events are typically random and unexpected.

The term was popularized by Nassim Nicholas Taleb, a finance professor, writer, and former Wall Street trader.

Block Chain

The Bitcoin block chain is a public record of all Bitcoin transactions. You might also hear the term used as a “public ledger”.

The block chain shows every single record of bitcoin transactions in order, dating back to the very first one.

The entire block chain can be downloaded and openly reviewed by anyone, or you can use a block explorer to review the block chain online.

Block Height

The block height is just the number of blocks connected together in the block chain. Height 0 for example refers to the very first block, called the “genesis block”.

Block Reward

When a block is successfully mined on the bitcoin network, there is a block reward that helps incentivize miners to secure the network.

The block reward is part of a “coinbase” transaction which may also include transaction fees.

The block rewards halves roughly every four years; see also “halving”.

BTFD | #BTFD

“Buy the Fucking Dip” Advice to other traders to pick up a coin that’s presumably hit its bottom.

“$GNT Golem making moves. Underpriced @ 7.5K If U are buying GNT under 10K still a good price 3 X LETS GO $ETH #CRYPTO #trading #BTFD”

Change

Let’s say you are spending $9.90 in your local supermarket, and you give the cashier $10.00. You will get back .10 cents in change.

The same logic applies to bitcoin transactions.

Bitcoin transactions are made up of inputs and outputs.

When you send bitcoins, you can only send them in a whole “output”.

The change is then sent back to the sender.

Cold Storage

The term cold storage is a general term for different ways of securing cryptocurrency offline (disconnected from the internet).

This would be the opposite of a hot wallet or hosted wallet, which is connected to the web for day-to-day transactions.

The purpose of using cold storage is to minimize the chances of your bitcoins being stolen from a malicious hacker and is commonly used for larger sums of bitcoins.

Cold Wallet and Hot Wallet

Cold storage is an offline wallet provided for storing cryptocurrency.

With cold storage, the digital wallet is stored on a platform that is not connected to the internet, thereby, protecting the wallet from unauthorized access, cyber hacks, and other vulnerabilities that a system connected to the internet is susceptible to.

Confirmation

A confirmation means that the bitcoin transaction has been verified by the network, through the process known as mining.

Once a transaction is confirmed, it cannot be reversed or double spent.

Transactions are included in blocks.

Cryptocurrency

Cryptocurrency is the broad name for digital currencies that use blockchain technology to work on a peer-to-peer basis.

Cryptocurrencies don’t need a bank to carry out transactions between individuals.

The nature of the blockchain means that individuals can transact with each other, even if they don’t trust each other.

The cryptocurrency network keeps track of all the transactions and ensures that no one tries to renege on a transaction.

Cryptocurrency 2.0

Also known as a decentralized app,(Dapp) a cryptocurrency 2.0 project uses the blockchain for something other than simply creating and sending money.

They typically involve decentralized versions of online services that were previously operated by a trusted third party.

Cryptography

Cryptography is used in multiple places to provide security for the Bitcoin network.

Cryptography, which is essentially mathematical and computer science algorithms used to encrypt and decrypt information, is used in bitcoin addresses, hash functions, and the block chain.

Cypherpunk

1. A person with an interest in encryption and privacy, especially one who uses encrypted email.

2. Cypherpunk, a term that appeared in Eric Hughes’ “A Cypherpunk’s Manifesto” in 1993, combines the ideas of cyberpunk, the spirit of individualism in cyberspace, with the use of strong  encryption ( ciphertext is encrypted text) to preserve privacy.

Cypherpunk advocates believe that the use of strong encryption algorithms will enable individuals to have safely private transactions.

They oppose any kind of government regulation of cryptography.

They admit the likelihood that criminals and terrorists will exploit the use of strong encryption systems, but accept the risk as the price to be paid for the individual’s right to privacy.

Dark Web

The part of the World Wide Web that is only accessible by means of special software, allowing users and website operators to remain anonymous or untraceable.

The Dark Web poses new and formidable challenges for law enforcement agencies around the world.

Decentralized

Having a decentralized bitcoin network is a critical aspect.

The network is “decentralized”, meaning that it’s void of a centralized company or entity that governs the network.

Bitcoin is a peer-to-peer protocol, where all users within the network work and communicate directly with each other, instead of having their funds handled by a middleman, such as a bank or credit card company.

Difficulty

Difficulty is directly related to Bitcoin mining (see mining below), and how hard it is to verify blocks in the Bitcoin network.

Bitcoin adjusts the mining difficulty of verifying blocks every 2016 blocks.

Difficulty is automatically adjusted to keep block verification times at ten minutes.

Dogecoin

Dogecoin is an altcoin that first started as a joke in late 2013. Dogecoin, which features a Japanese fighting dog as its mascot, gained a broad international following and quickly grew to have a multi-million dollar market capitalization.

Double Spend

If someone tries to send a bitcoin transaction to two different recipients at the same time, this is double spending. Once a bitcoin transaction is confirmed, it makes it nearly impossible to double spend it. The more confirmations that a transaction has, the harder it is to double spend the bitcoins.

DYOR | #DYOR

“Do Your Own Research.” The trader’s caveat that advice shouldn’t be taken at face value.

“$BCY has an appealing risk/reward here. Could take a few months to play out, however, and will require patience. #DYOR”

Exit Scam

Traditionally a term for darknet markets and vendors that, after building up a good reputation, accumulate bitcoins and disappear; exit scams are also feared by ICO participants who worry that, once they’ve raised hundreds of millions in hard-to-trace money, the developers will take the money and run.

Fiat

Government-issued money.

Full Node

A full node is when you download the entire block chain using a bitcoin client, and you relay, validate, and secure the data within the block chain.

The data is bitcoin transactions and blocks, which is validated across the entire network of users.

FOMO | #FOMO

“Fear of Missing Out.” When a coin starts to moon, dumb money rushes in. “$LGD on a TEAR right now!!! It has major highs right now! Some major #FOMO going on!!! Sell while it’s high. It WILL drop before fight!!!”

FUD

“Fear, Uncertainty, and Doubt.”

Another non-crypto term that describes attempts to scare weak-handed coin-holders into selling their positions, often with rumors of exit scams or hacks; the cheap, dumped coins are then picked up by the FUD-ers.

Fungibility

Fungibility is a good or asset’s interchangeability with other individual goods or assets of the same type.

Assets possessing this fungibility property simplify the exchange and trade processes, as interchangeability assumes everyone values all goods of that class the same.

HODL

HOLD ON FOR DEAR LIFE!

The intentionally misspelled word hodl has its roots in a December 2013 post on the Bitcoin Talk forum, “I AM HODLING”; when the author, GameKyuubi, couldn’t be bothered to fix his typo, the community instantly turned it into a verb: to hodl.


Along with other terms, hodl is an effective litmus test for sussing out newcomers, carpetbaggers, and tourists.

Halving

Bitcoins have a finite supply, which makes them scarce.

The total amount that will ever be issued is 21 million.

The number of bitcoins generated per block is decreased 50% every 210,000 blocks,roughtly four years.

This is called “halving.”

The final halving will take place in the year 2140.

Hash

A cryptographic hash is a mathematical function that takes a file and produces a relative shortcode that can be used to identify that file.

A hash has a couple of key properties:

• It is unique. 

Only a particular file can produce a particular hash, and two different files will never produce the same hash.

It cannot be reversed.

You can’t work out what a file was by looking at its hash.

Hashing is used to prove that a set of data has not been tampered with.

It is what makes bitcoin mining possible.

Hash Rate

The hash rate is how the Bitcoin mining network processing power is measured.

In order for miners to confirm transactions and secure the block chain, the hardware they use must perform intensive computational operations which is output in hashes per second.

Hash Converter

Use an online hash converter, such as https://hash.online-convert.com and enter the text you want to convert.

Then, try changing just a letter in the input text to see how the resulting hash varies significantly

Hard Fork

A hard fork is when a single cryptocurrency splits in two.

It occurs when a cryptocurrency’s existing code is changed, resulting in both an old and new version.

Meanwhile a soft fork is essentially the same thing, but the idea is that only one blockchain (and thus one coin) will remain valid as users adopt the update.

So both fork types create a split, but a hard fork is meant to create two blockchain/coins and a soft fork is meant to result in one.

Segwit was a soft fork, Bitcoin Cash, Bitcoin Gold, and Segwit2x are all hard forks.

Immutability

In object-oriented and functional programming, an immutable object (unchangeable object) is an object whose state cannot be modified after it is created.

This is in contrast to a mutable object (changeable object), which can be modified after it is created.

Lambo | #Lambo

A running joke among traders, you’re cryptorich when you can buy a Lamborghini; though absurd, it’s not unheard of — when Alexandre Cazes, the suspected founder of a major darknet marketplace, was found hanged in his Bangkok jail cell, Thai media reported that he owned four Lamborghinis.

Mining

Bitcoin mining is the process of using computer hardware to do mathematical calculations for the Bitcoin network in order to confirm transactions.

Miners collect transaction fees for the transactions they confirm and are awarded bitcoins for each block they verify.

Moon | #Moon

A rapid price increase.

Peer-to-Peer

Typically, online applications are provided by a central party that organizes all the transactions.

Your bank runs its own computers, and all the customers log into the bank’s computer to handle their transactions.

If Bob wants to send money to Alice, he asks the bank to do it, and the bank controls everything.

In a peer-to-peer arrangement, technology cuts out the middleman, meaning that people deal directly with each other.

Bob would send the money directly to Alice, and there wouldn’t be any bank involved at all.

Pool

As part of bitcoin mining, mining “pools” are a network of miners that work together to mine a block, then split the block reward among the pool miners.

Mining pools are a good way for miners to combine their resources to increase the probability of mining a block, and also contribute to the overall health and decentralization of the bitcoin network.

Private Key

A private key is a string of data that shows you have access to bitcoins in a specific wallet.

Think of a private key like a password; private keys must never be revealed to anyone but you, as they allow you to spend the bitcoins from your bitcoin wallet through a cryptographic signature.

Proof of Work

Proof of work refers to the hash of a block header (blocks of bitcoin transactions).

A block is considered valid only if its hash is lower than the current target.

Each block refers to a previous block adding to previous proofs of work, which forms a chain of blocks, known as a block chain.

Once a chain is formed, it confirms all previous Bitcoin transactions and secures the network.

Pump

A rapid price increase believed to be the result of market manipulation, a.k.a. pump and dump.

Public Address

A public bitcoin address is cryptographic hash of a public key.

A public address typically starts with the number “1.”

Think of a public address like an email address.

It can be published anywhere and bitcoins can be sent to it, just like an email can be sent to an email address.

Private Key

A private key is a string of data that shows you have access to bitcoins in a specific wallet.

Think of a private key like a password; private keys must never be revealed to anyone but you, as they allow you to spend the bitcoins from your bitcoin wallet through a cryptographic signature.

Rekt | #Rekt

Meaning “wrecked”.

“I never sell because of #FUD, and I never buy because of #FOMO.

That’s the easiest way to get #Rekt

Sats

Satoshis, currently the smallest unit of a single bitcoin, useful for tracking coin prices. “At the rate $XRP’s moving, I wouldn’t be surprised if it hits 10K sats by the end of the day.”

Security Tokens

A security token (sometimes called an authentication token) is a small hardware device that the owner carries to authorize access to a network service.

The device may be in the form of a smart card or may be embedded in a commonly used object such as a key fob.

Shitcoins

Pejorative term for altcoins, especially low-cap coins, often affectionately used by shitcoin hodlers.

SEGWIT

SegWit is the process by which the block size limit on a blockchain is increased by removing signature data from Bitcoin transactions.

When certain parts of a transaction are removed, this frees up space or capacity to add more transactions to the chain.

Transaction

A transaction is when data is sent to and from one bitcoin address to another.

Just like financial transactions where you send money from one person to another, in bitcoin you do the same thing by sending data (bitcoins) to each other.

Bitcoins have value because it’s based on the properties of mathematics, rather than relying on physical properties (like gold and silver) or trust in central authorities, like fiat currencies.

Wallet

Just like with paper dollars you hold in your physical wallet, a bitcoin wallet is a digital wallet where you can store, send, and receive bitcoins securely.

There are many varieties of wallets available, whether you’re looking for a web or mobile solution.

Ideally, a bitcoin wallet will give you access to your public and private keys.

This means that only you have rightful access to spend these bitcoins, whenever you choose to.

Whale

Anyone who owns 5 percent of any given coin, often used as a boogeyman to explain unwanted price movements.

“Nice support $NEO. Clear whale manipulation.”


Blue Pill vs. Red Pill
Choose wisely

When You’re ready …

Made with 💚 by Free Spirit

✌ & 💚



BitHouse with 💚


What bitcoin is … NOT

Bitcoin is not Abracadabra…
but Bitcoin can be Avada Kedavra for the current Banking system!

Bitcoin is not Magic…
but it can be for Muggles!

Bitcoin is not an “Investment” …
but educating yourself about bitcoin can be!

Bitcoin is not an “Investment”…
but knowing  the basics and being educated about it, lowers the chances of loosing your hard earned money!

Bitcoin is not an “Investment”…
but staking Sats proved to be a preety good Strategy in the Long Term!

Bitcoin is not digital money…
but it’s ons of it’s first applications!

Bitcoin is not money…
but is Money for the Internet!

Bitcoin is not PRICE !!!

Bitcoin is not PRICE…
but the market is driven mostly by FUD & FOMO people

Fear
Uncertainty
Doubt

bring the market Down


Fear
Of
Missing
Out

bring the market Up

Bitcoin is not a “Get Rich Quick Scheme” and the one’s that got rich were the one’s that were there from the begining…

Bitcoin is not voodoo people, magic people…
but a bunch of smart geeks & nerds that support the bitcoin’s philosophy and what it stands for…

Bitcoin is not under no juridstiction…
but it is a global p2p network of like-minded people that with the power of their equipment sustain, mantain and make the bitcoin network stronger and more decentralized!

Bitcoin is not a Coin…
but an entry in a digital ledger!

Bitcoin is not illegal activity money…
but bitcoin can be used in such activity…
Reports show that FIAT is still the No. #1 choice for “Evil Doers” as it doens’t have an public, open and visible ledger …
Duh…

Bitcoin is not evil…
but bitcoin can be used to do evil!
As does a Pen!
It can be used to do evil!
How, you would ask?
If  I take this ✏ and stick it up your a… who is Evil ?!?
The One who invented the pen?
The Pen?
Me?
Your a.. cause it was in the way 🤣
Perspective is a matter of opinion…

Bitcoin is not News…
but instead read pools, github, exchanges, wallets…
They are the ones that pave the way where bitcoin could, should or would go!

Bitcoin is not DEAD…
It was already declared Dead 441 times!

see :

https://99bitcoins.com/bitcoin-obituaries/

Bitcoin is not …
Yapidi Yapidi Yap people…

If someone says :

1 – Bitcoin consumes too much electricity, they don’t understand POW!

2 – Bitcoin isn’t a government backed currency, you should ask who backs their government…
If the answer is the Army…

3 – Bitcoin isn’t backed by gold like the the US$…
Neither is the $ since ’71

4 – Bitcoin isn’t real because I can’t see it…
80% of world’s money is Digital…

5 – Bitcoin isn’t a store of value as good as Gold is…
Gold had thousands of years to prove that, bitcoin only 13… give it time!
It already proved a lot !!!

6 – Bitcoin’s inventor is annonymous and can’t be trusted…
Who invented money then? How do money come up into existance?

7 – Bitcoin will never be largely accepted because it isn’t issued by a government…
You know what else wasn’t issued by no government ? Cars, Electricity, Steam Engine, Facebook, Uber, Google, Amazon, etc bla bla bla

8 – Bitcoin can’t be a currency cause I can’t buy anything with it…
I think I have shared a list with places that you can buy things with bitcoin…Quite a few!!!

9 – Whales… Beware of yapidi yap of whales cause they say one and do the opposite 🙂 😉 !!!

9 – Bitcoin is not this, bitcoin is not that but they all swarm around the bee’s honeypot as if it were honey 🤣🤣🤣

I forgot…In the meantime, little unsignificant countries like El Salvador, mine bitcoin with 🌋 !!!

And still newspapers, investors that bite their whatever not having invested when it was under $1, and a hole portion of the world are all saying…

Etc bla bla bla Yapidi Yapidi Yap


Never Forget The Golden Rules:

Not Your Keys, Not Your Crypto!!!

Don’t Trust, Verify!!!

Don’t Believe, Do your own Resesearch and due diligence!!!

Save your Wallet’s Mnemonic Phrase in at least 3 places for safe-keeping!!!


WE ARE SATOSHI


When you’re ready…

Timothy C. May

Hal Finney

Poem of the Legacy

From the ashes of the long forgotten past,
A bright mind wrote a code that would for ever last…
A code so powerful and strong,
That would change the world for oh so long…

The code he wrote and set it free,
For the humankind legacy to be…
To change the lives of future generations to come,
He wrote the code and he was gone…

Oh, bright mind your legacy will last,
For generations to come and be thankful about the past…
Nobody knows who you might be,
Some do and say Kudos to You for Ethernity!


Made with 💚  by Free Spirit

✌ & 💚




BitHouse with 💚

Btc-Usd Monthly Returns


Btc-Usd Monthly Returns 2011-2021

Asset Class Total Return over last 10 Years

Numbers talk louder and more truthful than words could ever do !!!

Simple plain numbers that have the answer everyone is looking for 🙂😉

That’s what I love about mathematics, it’s an undeniable Truth !!!

Read and pick your own conclusion folks !!!

Shared with 💚 by Free Spirit


✌ & 💚